
H-Houdini: Scalable Invariant Learning
Sushant Dinesh

University of California, Berkeley
Berkeley, USA

sushantd@berkeley.edu

Yongye Zhu
University of California, Berkeley

Berkeley, USA
yongye.zhu@berkeley.edu

Christopher W. Fletcher
University of California, Berkeley

Berkeley, USA
cwfletcher@berkeley.edu

Abstract
Formal verification is a critical task in hardware design today.
Yet, while there has been significant progress in improving
technique automation and efficiency, scaling to large hard-
ware designs remains a significant challenge.

We address this challenge by proposing H-Houdini: a
new algorithm for (mostly) push-button inductive invariant
learning that scales to large hardware designs. H-Houdini
combines the strengths of Machine Learning Inspired Syn-
thesis (MLIS) and SAT-based Incremental Learning. The key
advance is a method that replaces the monolithic SMT-style
checks made by MLIS with a carefully-constructed hierarchy
of smaller, incremental SMT checks that can be parallelized,
memoized and reassembled into the original ‘monolithic’
invariant in a correct-by-construction fashion.

We instantiate H-Houdini as VeloCT, a framework that
proves hardware security properties by learning relational
invariants. We benchmark VeloCT on the ‘safe instruction
set synthesis’ problem in microarchitectural security. Here,
VeloCT automatically (with no expert annotations) learns
an invariant for the RISC-V Rocketchip in under 10s (2880×
faster than state of the art). Further, VeloCT is the first work
to scale to the RISC-V out-of-order BOOM and can (mostly-
automatically) verify all BOOM variants (ranging from Small
to Mega) in between 6.95 minutes to 199.1 minutes.

CCS Concepts: • Security and privacy→ Logic and veri-
fication; Side-channel analysis and countermeasures; •
Hardware → Hardware validation.

Keywords: Hardware Verification; Invariant Learning; Scal-
able Verification; Formal Verification; Abductive Reasoning;
Microarchitectural Security; Constant-Time Programming;
Incremental Invariant Learning; Hardware attacks and de-
fenses;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707263

ACM Reference Format:
Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher. 2025.
H-Houdini: Scalable Invariant Learning. In Proceedings of the 29th

ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems, Volume 1 (ASPLOS ’25),

March 30–April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3669940.3707263

1 Introduction
Formal verification is a well-recognized bottleneck in hard-
ware design today. Further, one can expect this bottleneck
to worsen into the future as design complexity further in-
creases, design time cycles further decrease [35], and the set
of properties to be verified further increases (e.g., due to the
rise of hardware security vulnerabilities [36, 38]).
At a high level, automated verification procedures con-

sist of an interplay between two components: (i) an al-
gorithm that proposes invariants or partial invariants to
prove a property, and (ii) off-the-shelf verification engines
that check the proposed invariants. While the past several
decades have seen remarkable progress in this direction (e.g.,
[8, 22, 28, 32, 34, 39, 40]), it still faces scalability challenges
when attempting to automatically learn invariants for and
verify large designs.

This paper considers scalability challenges for a popular
verification paradigm called Machine Learning Inspired In-
variant Synthesis (MLIS) [12, 23, 24, 27, 28, 30, 40, 53]. MLIS
approaches, such as the famous Houdini [28] algorithm and
Sorcar [40], frame invariant learning as an interaction be-
tween a learner and a teacher. The learner attempts to learn
an invariant using examples provided by the teacher.
MLIS algorithms come with a number of positive at-

tributes. Broadly, they enable a “kitchen sink” approach
to verification. That is, designers can freely add predicates
that might be useful in finding an invariant, and unneeded
predicates cannot cause a failure if an invariant exists in
the current predicate abstraction. They also feature several
mechanisms that can shrink the invariant search space. First,
invariants that are found are restricted to the given predicate
abstraction. Properly chosen, a predicate abstraction will be
able to describe the invariant yet also imply a small (or at least
tractable) universe of possible invariants. Second, learning is
bootstrapped through the use of positive examples (similar to
example-answer pairs in supervised learning), which further
constrain the invariant search space to just those invariants
consistent with at least the positive examples.

https://doi.org/10.1145/3669940.3707263
https://doi.org/10.1145/3669940.3707263

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

Yet, MLIS still faces significant scalability challenges be-
cause it assumes the problem under verification is a black
box, i.e., does not leverage the problem’s structure. Conse-
quently, each query to the teacher to generate an example is
computationally expensive, e.g., an SMT query over the set
of all predicates.
By contrast, SAT-based approaches, such as IC3/PDR [8,

22], assume the system is white box and can exploit problem
structure to perform much cheaper, ‘relative’ checks that
incrementally eliminate bad states. This results in cheaper
SMT queries, but without the aforementioned other benefits
of MLIS algorithms.

This paper therefore asks a natural question:Canwe design
an algorithm that blends the advantages of the MLIS learners

with the ability to perform cheaper incremental checks from

white box SAT-based approaches? Would such an approach

scale significantly better than existing MLIS approaches?

This Paper. We answer the above question in the affirmative
by presenting H-Houdini. Relative to SAT-based learners,
H-Houdini uses an expert-informed predicate abstraction,
a mechanism to guide predicate selection and positive exam-
ples to dramatically shrink the invariant search space. Rela-
tive to MLIS learners, H-Houdini uses incremental (white
box) SMT queries to dramatically decrease the time to search
through the (now shrunken) invariant search space.

At the heart of H-Houdini is a way to soundly decompose
the process of learning an inductive invariant into smaller
incremental pieces that compose together at the end to form a
complete inductive invariant that proves the target property.
Each of the above smaller pieces can be proven inductive
using a more efficient relative inductive check. Once all of
the pieces are checked, the composition guarantees a correct
invariant by construction and the ‘monolithic’ invariant and
property never needs to be checked directly.

?

B C

D E

?

A = 1

For example, consider a two-
input AND gate in the context of a
larger digital system, whose inputs
(B and C) and output (A) are clocked
state elements. If the target property
is a predicate that requires the out-
put hold a 1, i.e., A = 1, it is sufficient
to require that the final invariant in-
clude predicates that constrain the inputs to also be 1, i.e.,
B = 1 and C = 1. To be inductive, this may require that we
recursively add predicates to state elements in the cone of
influence of each input: the value of C is dependent on D
and E, so what should the conditions on D and E be such
that C will be 1? And so on. By verifying the inductivity of
each level of predicates locally, we prove that the overall
invariant (the set of all added predicates) is inductive.

Aside from featuring more efficient checks, this approach
features a high degree of parallelism, opportunities for mem-
oization and search-space pruning via positive examples.

Returning to the above example, synthesizing what predi-
cates are required during the recursion on each input state
element can be done in parallel. If a predicate is inconsistent
with a positive example, it need not be considered. Once a
predicate is either removed or proven inductive, it need not
be re-proven. That is, if two cones of influence overlap, the
overlap need only be analyzed once.
Application to secure hardware verification: VeloCT.
We instantiate H-Houdini to solve an important problem
in hardware security called the safe instruction set synthe-

sis problem (SISP) [17, 19, 20, 26, 29]. We call the resulting
analysis tool VeloCT.
Verifying the SISP enables portable and secure constant-

time programming on modern processors. Constant-time
programming is a ubiquitous paradigm for writing code that
is safe from timing attacks [1, 7, 11, 37, 51]. The idea is to
write a program using only ‘safe’ instructions, where a safe
instruction’s execution time does not depend on its operands.
Then, by composition, the program’s execution time is not
a function of its inputs. Unfortunately, this paradigm is dif-
ficult to follow today because processors may each employ
different software-invisible optimizations that turn different
sets of instructions into operand timing-variable instructions.
For example, a multiply instruction may be equipped with a
‘skip-on-0’ feature. Safe instruction synthesis addresses this
issue by analyzing input RTL and determining (synthesizing)
the set of safe instructions given that RTL.
Prior work [20] on automated invariant learning for the

SISP is based on theMLIS algorithm Sorcar (which improves
Houdini’s performance by making it property directed). It
thus faces the scalability issues described earlier. Specifically,
the authors report that learning an inductive invariant for
the open-source (in-order) RISC-V Rocketchip core took 8
hours, and were unable to scale to out-of-order cores such
as RISC-V BOOM. We experimentally verified that Sorcar-
style (monolithic) SMT queries did not scale to BOOM.

We use VeloCT to address these scalability issues. Using
VeloCT, we are able to learn an invariant for Rocketchip
with no expert annotations in under 10 seconds—a 2880×
speedup over prior work. Further, with modest expert an-
notations, we are able to learn invariants for all variants
of BOOM (from SmallBOOM to MegaBOOM) in between
6.95 minutes and 199.1 minutes. We verify that the safe sets
generated by VeloCT are consistent with prior work.
To summarize, we make the following contributions:

1. We propose H-Houdini, a scalable invariant learning
algorithm that enables MLIS to use incremental, paral-
lel SMT checks.

2. We propose VeloCT, an instance of H-Houdini that
enables scalable safe instruction set synthesis given
RTL as input.

3. We evaluate VeloCT on open-source processors. On
the in-order Rocketchip core (10K state bits), we learn

H-Houdini: Scalable Invariant Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

an invariant in under 10 seconds—a 2880× speedup
over prior work. Our analysis is the first to be able
to automatically learn invariants for the out-of-order
BOOM core. Ranging from SmallBOOM (48K state bits)
to MegaBOOM (133K state bits), invariant learning
takes between 6.95 minutes and 199.1 minutes.

VeloCT is open source, and can be found at [21].

2 Background & Motivation
2.1 Terminology
We now formally setup the invariant synthesis problem.
Definition 2.1. Transition System (𝑇𝑆): We denote a transi-
tion system 𝑇𝑆 by a 3-tuple (S,𝑇 , s0); where S is the set of
all states, 𝑇 : S × S is the transition relation, and s0 ∈ S is a
special initial state. Let each state s ∈ S be made up of state
variables with identifiers in V.

For explanatory purposes we assume that the𝑇𝑆 is a hard-
ware circuit. The transition relation 𝑇 is equivalent to simu-
lating the circuit for 1 cycle, and each state s ∈ S is a mapping
from identifiers in V (e.g., registers) to concrete values.

We are interested in proving a property P on the transition
system 𝑇𝑆 , e.g., a safety property to show 𝑇𝑆 does not reach
any Bad states starting from the initial state s0. One way to do
this to to derive an inductive invariant H that proves P holds
forever on𝑇𝑆 . Intuitively, one can think of any invariant I as
forming a set of states. We can test for set membership of a
state s, denoted by I(s): I(s) is true iff s ∈ I. Then, an inductive
invariant H is a set that is closed under the transition 𝑇 and
ensures that for any s, if H(s) is true then P(s) is also true.
Framing this intuition formally:
Definition 2.2. Inductive Invariant (H): H is an inductive
invariant for a property P on 𝑇𝑆 if the following three con-
ditions hold. (i) Initiation: H(s0), (ii) Consecution: ∀ s, s′ ∈ S:
H(s) ∧𝑇 (s, s′) =⇒ H(s′), and finally, (iii) P holds: ∀ s ∈ S:
H(s) =⇒ P(s).
For brevity we will use H =⇒ H′ as a shorthand to

denote the consecution check on H, leaving out quantifiers
and the transition relation. Similarly, we will use a shorthand
of the form H =⇒ P to denote ∀ s ∈ S: H(𝑠) =⇒ P(𝑠),
leaving out the quantifiers when the context is clear.
Definition 2.3. Invariant Synthesis Problem: Given a
transition system 𝑇𝑆 and a property P, synthesize an induc-
tive invariant H to prove P or return None to indicate that
no such H exists.

In the above definitions, we use the concept of monolithic

induction to describe the consecution requirement (ii). How-
ever, induction can also be applied incrementally through
relative induction, whose concepts are defined below.
Definition 2.4. Relative Inductivity: We say H is rela-
tively inductive toG ifG∧H =⇒ H′. Notice that if we setG
to 𝑡𝑟𝑢𝑒 , then relative inductivity reduces to the well-known
monolithic inductive query. These relative inductive queries

are a crucial part in making SAT-based invariant learning
algorithms like IC3/AVR incremental.

Definition 2.5. Abduct (A): Consider a formula of the form
H =⇒ H′ that does not hold initially. We define an abduct
A, the result of an abductive query [42], as a formula that
“fixes” the above implication, i.e., A ∧ H =⇒ H′ holds and
A is non-contradictory with H.

Remark. A ∧ H is non-contradictory if ∃𝑥, 𝑥 |= A ∧ H. This
is to ensure that the implication is not vacuously true.

2.2 Machine Learning Inspired Invariant Synthesis
Machine Learning Inspired Invariant Synthesis (MLIS)
frames the problem of learning an invariant as an inter-
action between a teacher and a learner, much like a machine
learning problem. The learner (who does not see 𝑇𝑆) has to
learn an invariant based on the examples returned by the
teacher (who does see𝑇𝑆). An example can be of three types:
(i) A positive example that the proposed invariant needs to
allow, (ii) A negative example that shows that the invariant
allows a 𝐵𝑎𝑑 state, or (iii) An implication example that shows
why the invariant is not inductive. The algorithm proceeds
in rounds where the learner uses the counterexamples to
refine and propose better invariants in subsequent rounds.

2.2.1 Houdini overview Next, we review the most popu-
lar MLIS algorithm: Houdini [28]. Houdini takes as inputs
the set of all predicates P, a set of positive examples E, and a
property of interest P and outputs either an invariant H if
successful, or None if it fails. A predicate p is a formula in
first-order logic over a subset of variables Vp ⊆ V. Given a
state s, p will evaluate either evaluate to True, denoted by
s |= p or False denoted by s ̸ |= p.

Houdini first sifts the predicate set P through all the pos-
itive examples to eliminate all predicates that do not hold.
That is, it performs

P∗ = {p | p ∈ P and ∀𝑒∈E 𝑒 |= p}.

This step greatly shrinks the invariant search space. At
each point hereafter, the current candidate invariant is
formed by conjuncting over predicates in the current P∗,
i.e., H𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 =

∧
p
P∗𝑝 . Next, the algorithm loops until the

invariant is inductive. For each counterexample to induc-
tivity 𝑐𝑒𝑥 found, the algorithm filters the set of remaining
predicates as

P∗ = {p | p ∈ P∗ and 𝑐𝑒𝑥 |= p}.

Each inductivity check is a query to a theorem prover.
We assume Satisfiability Modulo Theory (SMT) solvers are
used. Houdini guarantees that if an invariant exists as a
conjunction of a subset of P, it will be found. This encourages
a “kitchen sink” approach to automated invariant learning
— experts throw in all predicates that might be useful and
Houdini searches for an inductive invariant.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

Note, we can augment the original Houdini algorithm to
take P as an input and check to see if the inductive invariant
satisfies P (returning None if not).1 Sorcar improves Hou-
dini by making it property directed where the property is
checked throughout invariant synthesis and used to further
prune the search space.

2.2.2 Limitations of Houdini Each query made by Hou-
dini is monolithic over the set of remaining predicates P∗,
which is 𝑂 (|P|). Following the kitchen sink philosophy, this
means that queries tend to be over a large number of pred-
icates (even predicates that turn out not to be useful in
constructing the final invariant). Further, these expensive
monolithic checks are made in the ‘inner-most loop’ of the
algorithm—for each inductivity check.

These characteristics prevent Houdini from scaling to our
problems of interest. Specifically, in our experience and as
supported by prior work [17], even a single SMT query over
predicates spanning the BOOM microarchitecture is pro-
hibitively expensive and beyond the capabilities of current
automated verification tools.

3 H-Houdini
We now describe our invariant learning algorithm, H-
Houdini2. In a nutshell, H-Houdini replaces Houdini’s
sequential monolithic inductivity checks with a “wave” of
property-directed, incremental, memoizable and paralleliz-
able inductivity checks. These attributes result in better effi-
ciency and scalability.

We start by explaining the ideas conceptually. For simplic-
ity, let the property P be a single predicate p𝑡𝑎𝑟𝑔𝑒𝑡 ∈ P. (More
generally, P can be a conjunct over a subset of P. In that case,
the below explanation is repeated for each predicate in P.
Memoization ensures that efficiency is unaffected.)
The insight is that to show p𝑡𝑎𝑟𝑔𝑒𝑡 holds, it is sufficient

to require that a subset of the predicates directly influenc-
ing p𝑡𝑎𝑟𝑔𝑒𝑡 be included in the final invariant. That is, it is
sufficient to find an abduct A for p𝑡𝑎𝑟𝑔𝑒𝑡 that only contains
predicates whose state elements can influence p𝑡𝑎𝑟𝑔𝑒𝑡 in the
next step of the transition system.
For example, consider an AND gate whose inputs and

output are clocked state elements. If p𝑡𝑎𝑟𝑔𝑒𝑡 says that the
output state element must always hold a 1, it is sufficient to
require that the final invariant include predicates that force
the input state elements to hold 1s.

The above creates new proof obligations. Namely, wemust
now show for each predicate 𝑝 ∈ A that including 𝑝 in
the invariant leads to an inductive invariant. For this, we
recursively repeat the above procedure for each 𝑝 .

1The original algorithm assumes no annotations, e.g., assertions, and tries
to find any inductive invariant.
2H-Houdini stands for Hierarchical Houdini—a wordplay on ‘Harry Hou-
dini,’ the illustrious magician’s full name.

The recursion creates a wavefront of proof obligations
that resembles a depth-first search (DFS) over the design’s
state elements (predicates). If an abduct for some 𝑝 forces
us to include a predicate 𝑝′ that makes the invariant not
inductive, we backtrack and ask for a different abduct for 𝑝
(that does not include 𝑝′). If one does not exist, we backtrack
further. Like a normal DFS, once we ‘visit’ each predicate
once (either prove that including it either can or does not
lead to an inductive invariant), we need not recurse through
it again. Once the wavefront terminates, the hierarchy of
abducts are combined to form the overall invariant. This can
be done without ever performing a monolithic inductivity
check, by construction of the composition of abducts.

We design the above process to be property-directed, incre-
mental, memoizable and parallelizable. For property directed,
we pre-filter the set of predicates that can be considered for
each abduct to only be those that are consistent with positive
examples (for which we believe the property holds) and are
helpful in proving the property. For incremental, we further
pre-filter predicates to those that can influence the current
p𝑡𝑎𝑟𝑔𝑒𝑡 within one step of the transition system. Both of the
above decrease the cost of synthesizing each abduct (which
is done using SMT queries) in the common case. When the
recursion over 𝑝 ∈ A completes and A is either accepted as
the solution for p𝑡𝑎𝑟𝑔𝑒𝑡 or the solver says there is no solution
for p𝑡𝑎𝑟𝑔𝑒𝑡 , p𝑡𝑎𝑟𝑔𝑒𝑡 is considered solved and need not be ex-
plored again. Finally, synthesizing each abduct can be done
in parallel.

We now describe the above more formally, proceeding as
follows: §3.1 argues that the main premise in H-Houdini
is sound; §3.2 presents the H-Houdini algorithm in detail;
Appendix A provides proof sketches of soundness and com-
pleteness.

3.1 Hierarchical Decomposition is Sound
The main premise in H-Houdini is that we can decompose
a monolithic invariant into a hierarchy of smaller invari-
ants, and that to prove inductivity it is sufficient to perform
SMT queries over only the smaller invariants. We now argue
why this approach is sound, breaking the argument into two
parts. First, we will demonstrate how an inductive invariant
can be synthesized incrementally using relatively inductive
queries and prove that this approach is sound provided cer-
tain assumptions hold at each step. Next, we will show how
exploiting the hierarchy of the circuit to learn incrementally
satisfies these assumptions.
Suppose we wish to prove the property H0. We start by

finding an H1 such that H0 is relatively inductive w.r.t. H1:
H1 ∧ H0 =⇒ H′

0 (1)
Next, repeat the process. We find an H2 such that:

H2 ∧ H1 =⇒ H′
1 (2)

Let us assume that H0 and H2 are non-contradictory, i.e.,
∃𝑥, 𝑥 |= H0 ∧ H2. Then, from Equation 1 and Equation 2, it

H-Houdini: Scalable Invariant Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

follows:
H2 ∧ H1 ∧ H0 =⇒ H′

1 ∧ H′
0

This means H1 ∧ H0 is relatively inductive to H2. We recur-
sively repeat this process, giving the following 𝑛 equations:

H𝑗+1 ∧ H𝑗 =⇒ H′
𝑗 𝑗 ∈ [0, 𝑘)

𝑡𝑟𝑢𝑒 ∧ H𝑗 =⇒ H′
𝑗 𝑗 ∈ [𝑘, 𝑛)

where 𝑡𝑟𝑢𝑒 ∧H𝑗 =⇒ H′
𝑗 denote base cases in the recursion,

i.e., fragments of H that are inductive by themselves (e.g.,
module inputs, constants). Applying the same argument from
above, we get:

𝑡𝑟𝑢𝑒 ∧ H𝑛 ∧ . . . ∧ H1 ∧ H0 =⇒ H′
𝑛 ∧ . . . ∧ H′

1 ∧ H′
0

We can denote the monolithic invariant as H = ∧𝑛
𝑖=0H𝑖 , in

which case the above statement is equivalent to H =⇒ H′.
Lastly, we have H0, the property of interest as a part of H,
and so H =⇒ H0 trivially. Importantly, we did not need to
prove inductivity of the monolithic invariant directly.
Now, if every H𝑖 we construct allows every positive ex-

ample, i.e., ∀𝑒∈E 𝑒 |= 𝐻𝑖 , then H is the required inductive
invariant derived incrementally. To summarize this discus-
sion, hierarchical incremental invariant learning is sound as
long as the following premise holds:
Premise for Soundness (P-S). H𝑖 should allow all positive
examples: ∀𝑒∈E 𝑒 |= 𝐻𝑖 .

Remark. (P-S) ensures H𝑖 are not contradictory.

The positive examples E act as witnesses to the fact that
none of the H𝑖 are contradictory as clearly they allow states
in E. This prevents the derived H from being vacuously true
by pruning out all states s ∈ S.

3.2 H-Houdini Algorithm
Now we describe the H-Houdini algorithm, a concrete in-
stance of an incremental learner that exploits hierarchy to
soundly and incrementally learn an invariant.
See algorithm 1. The algorithm has inputs similar to the

original Houdini but with two differences. First, the pred-
icate universe P is replaced by an oracle OA,E

𝑚𝑖𝑛𝑒
which is

instantiated with the set of positive examples E and option-
ally expert annotations A. Second, as H-Houdini is white
box, it takes in the transition system𝑇𝑆 . Note, p𝑡𝑎𝑟𝑔𝑒𝑡 is anal-
ogous to P (§3). H-Houdini outputs an inductive invariant
(H) that proves p𝑡𝑎𝑟𝑔𝑒𝑡 , or None if no such invariant exists.

The algorithm proceeds as follows. We define a solution
for a predicate p𝑡𝑎𝑟𝑔𝑒𝑡 as an abduct that has been proven to be
inductive or None (meaning p𝑡𝑎𝑟𝑔𝑒𝑡 cannot appear in the final
invariant). To start, if a solution to p𝑡𝑎𝑟𝑔𝑒𝑡 has already been
found, it is returned immediately via memoization (line 3).
Otherwise, the algorithm enters a loop to find a new solution
(line 7). Within the loop, the algorithm first sets H to p𝑡𝑎𝑟𝑔𝑒𝑡 .
Next, we invoke three subroutines.
First, O𝑇𝑆

𝑠𝑙𝑖𝑐𝑒
(the slicing oracle) takes as input p𝑡𝑎𝑟𝑔𝑒𝑡 and

outputs the set of state elements V𝑠𝑙𝑖𝑐𝑒 that influence the

Algorithm 1: The H-Houdini algorithm.
Input :OA,E

𝑚𝑖𝑛𝑒
: The predicate mining oracle, p𝑡𝑎𝑟𝑔𝑒𝑡 :

Target predicate/property, 𝑇𝑆 : Transition system
Output :H: invariant that proves p𝑡𝑎𝑟𝑔𝑒𝑡 or None

1 P𝑓 𝑎𝑖𝑙 = ∅;
2 def H-Houdini (OA,E

𝑚𝑖𝑛𝑒
, p𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑇𝑆)→ 𝑁𝑜𝑛𝑒/H:

3 if p𝑡𝑎𝑟𝑔𝑒𝑡 is memoized and soln ∩ P𝑓 𝑎𝑖𝑙 = ∅ then
4 return solution to p𝑡𝑎𝑟𝑔𝑒𝑡 ;
5 end
6 valid-solution = False;
7 while not valid-solution do
8 H = p𝑡𝑎𝑟𝑔𝑒𝑡 ;
9 V𝑠𝑙𝑖𝑐𝑒 = O𝑇𝑆

𝑠𝑙𝑖𝑐𝑒
(p𝑡𝑎𝑟𝑔𝑒𝑡);

10 PV = OA,E
𝑚𝑖𝑛𝑒

(p𝑡𝑎𝑟𝑔𝑒𝑡 ,V𝑠𝑙𝑖𝑐𝑒);
11 PV = PV \ P𝑓 𝑎𝑖𝑙 ;
12 A = O𝑎𝑏𝑑𝑢𝑐𝑡 (p𝑡𝑎𝑟𝑔𝑒𝑡 , PV);
13 set A as the memoized solution to p𝑡𝑎𝑟𝑔𝑒𝑡 ;
14 if A is None then
15 return None;
16 end
17 valid-solution = True;
18 for p in A do
19 H𝑠𝑜𝑙 = H-Houdini (OA,E

𝑚𝑖𝑛𝑒
, p,𝑇𝑆);

20 if H𝑠𝑜𝑙 is None then
21 valid-solution = False;
22 P𝑓 𝑎𝑖𝑙 = P𝑓 𝑎𝑖𝑙 ∪ {p};
23 break;
24 end
25 H = H ∧ H𝑠𝑜𝑙

26 end
27 end
28 return H;
29 end

inductivity of p𝑡𝑎𝑟𝑔𝑒𝑡 in one step of 𝑇𝑆 . When verifying se-
quential circuits (as we do in this paper), these are the state
elements in the 1-step cone-of-influence (COI) for p𝑡𝑎𝑟𝑔𝑒𝑡 .3
That is, in our AND gate example (§3), if p𝑡𝑎𝑟𝑔𝑒𝑡 is over the
output register, V𝑠𝑙𝑖𝑐𝑒 is the set of input registers.

Second, OA,E
𝑚𝑖𝑛𝑒

(the mining oracle) translates V𝑠𝑙𝑖𝑐𝑒 into a
set of predicates PV that will be considered when synthe-
sizing abducts. This takes into account the user-specified
predicate language, the positive examples E and (optionally)
additional expert annotations (A).4
Third, O𝑎𝑏𝑑𝑢𝑐𝑡 (the abduction oracle) takes PV and at-

tempts to synthesize an abduct A out of a subset of PV for
p𝑡𝑎𝑟𝑔𝑒𝑡 (line 12). If multiple abducts are found, one is returned;
if O𝑎𝑏𝑑𝑢𝑐𝑡 is called with the same p𝑡𝑎𝑟𝑔𝑒𝑡 multiple times, we
3Given a software verification task, the 1-step COI of a statement 𝑋 is the
data and control-dependencies of 𝑋 .
4The mining oracle we describe here is deterministic. Our implementation
adopts an incremental variant that returns steadily larger subsets of PV
over multiple calls, to encourage smaller abducts. See §3.2.3.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

𝑝0 𝑝1 𝑝2

𝑝3 𝑝4 𝑝5

Ρ

Figure 1.Dependency graph between predicates in a𝑇𝑆 and P. Each
node is a predicate p𝑖 , and edge p𝑖 → p𝑗 means p𝑖 is in the 1-step
COI of p𝑗 . The hollowed out predicate p3 does not hold inductively
and cannot be included in an invariant. The figure shows that there
are two potential solutions, the nodes in the blue area and the nodes
in the green area—both of which share the common set of nodes in
the middle. The blue nodes eventually fail because of p3, causing
H-Houdini to backtrack and discover the solution in green. 𝑝1 and
𝑝4 need only be analyzed once.

require a different abduct be returned each call (as in an iter-
ator). If no abduct is found (line 15), the algorithm returns
None, indicating that no solution exists. In our implementa-
tion, each abduct returned costs an SMT query. More details
for O𝑎𝑏𝑑𝑢𝑐𝑡 are given in §3.2.3.

If an abduct is found, it is added as the solution to p𝑡𝑎𝑟𝑔𝑒𝑡 ,
and valid-solution is set to True. The algorithm then
checks each predicate in the abduct recursively (line 18). For
each predicate, it calls H-Houdini to find a solution. If any
predicate fails to hold inductively (line 21), valid-solution
is set to False, and the loop exits early to attempt a new
solution for p𝑡𝑎𝑟𝑔𝑒𝑡 (line 7). If all predicates hold, the invari-
ant is updated with the solutions found, and the algorithm
returns H (line 28).

3.2.1 Backtracking and Memoization The above algo-
rithm partially backtracks when it discovers that a solution
is not possible. To illustrate this, look at the example in Fig-
ure 1. In this figure, we show a predicate dependency graph.
Each node in the graph is a predicate 𝑝𝑖 and an edge from
p𝑖 → p𝑗 denotes that p𝑖 is in the 1-step COI of p𝑗 . Suppose
p3 is not inductive. We start the algorithm from predicate
P. Suppose there are two possible solutions for P: the solu-
tion in the blue region p0 ∧ p1 or the solution in the green
region p1 ∧ p2. These solutions would be returned through
successive queries to O𝑎𝑏𝑑𝑢𝑐𝑡 as discussed previously.
Suppose O𝑎𝑏𝑑𝑢𝑐𝑡 first returns the blue solution. Then H-

Houdini fires off on subtrees p0 and p1. Eventually, because
p3 fails to be inductive, H-Houdini discovers that p0 can-
not hold inductively and therefore backtracks to synthesize
a new solution for P. The next query to O𝑎𝑏𝑑𝑢𝑐𝑡 for P re-
turns the green solution as p0 is no longer available. But
the work we need to do to ratify the green solution is sig-
nificantly reduced since we memoized the solution for p1.
The only additional work to do to complete the invariant is
to synthesize the solution for the nodes colored green: p2
and p5. In this way, the algorithm only backtracks partially.

H-Houdini only squashes the path of failure while the rest
of the synthesized solutions may be reused.

Backtracking is mainly caused by deficiencies in positive
examples (E). If E was exhaustive, then a positive example
𝑒 ∈ E would have been a witness to invalidate p3 and p0
as candidate predicates, allowing us to synthesize the green
solution first and eliminate the backtrack.With a robust set of
examples, a majority of the backtracking can be eliminated.

3.2.2 Cycles We note, the recursion can encounter a cycle.
For example, if the hardware design has a backedge we can
encounter 𝑝𝑖 → 𝑝 𝑗 → 𝑝𝑖 . This is benign. The pending
(memoized) solution for 𝑝𝑖 will be used to verify 𝑝 𝑗 . If later
it is found that 𝑝𝑖 has no solution, we must re-synthesize
a solution for 𝑝 𝑗 . This is done by the early return (line 3)
performing an intersection over P𝑓 𝑎𝑖𝑙 .

3.2.3 Details for Abduction Oracle O𝑎𝑏𝑑𝑢𝑐𝑡 (p𝑡𝑎𝑟𝑔𝑒𝑡 , PV)
O𝑎𝑏𝑑𝑢𝑐𝑡 takes a target predicate p𝑡𝑎𝑟𝑔𝑒𝑡 and a set of predicates
(PV) and outputs an abduct A, a conjunction over a subset of
PV that shows p𝑡𝑎𝑟𝑔𝑒𝑡 is 1-step inductive. Formally: A =⇒
p
′
𝑡𝑎𝑟𝑔𝑒𝑡 . Such an A can be efficiently computed using Craig’s
interpolants [15, 39]. We compute the interpolants quickly
using the following (to our knowledge, novel) SMT query:5∧

𝑣

PV𝑣 ∧ p𝑡𝑎𝑟𝑔𝑒𝑡 ∧ ¬p′𝑡𝑎𝑟𝑔𝑒𝑡

If the above query returns SAT, then there is no conjunction
over PV, such that p𝑡𝑎𝑟𝑔𝑒𝑡 is relatively inductive. Thus, we
return None. Otherwise, if the solver returns UNSAT, we
extract the predicates in the UNSAT core from the solver and
use it as the abduct. Note that since

∧
𝑣 PV𝑣 ∧ p𝑡𝑎𝑟𝑔𝑒𝑡 cannot

contain any contradictions, the UNSAT-ness of the query
has to be because of its interaction with ¬p′𝑡𝑎𝑟𝑔𝑒𝑡 , thereby
making extraction of these abducts sound.

To minimize work and final invariant size, we bias O𝑎𝑏𝑑𝑢𝑐𝑡

to output the weakest (smallest) abduct possible. For any
two abducts A1 and A2, A1 is weaker than A2 if A2 =⇒ A1.
Ideally, we desire a minimal abduct Am, defined as one
where ∄ A such that Am =⇒ A. Our implementation
extracts small (ideally minimal) abducts by enabling the
minimal-unsat-cores option in cvc5 which guarantees lo-
cally minimal unsat cores.

3.2.4 Parallelism The serial implementation of H-
Houdini lends itself to a high degree of parallelism. For
example, the loop that recursively checks each predicate in
the abduct (line 18-line 25) can be performed in parallel. We
parallelize this loop in our implementation and evaluation.
More aggressive forms of speculative parallelism, e.g., trying
different abducts in parallel, are possible. We leave more
detailed investigation of these to future work.

5We tried other methods, e.g., cvc5’s native O𝑎𝑏𝑑𝑢𝑐𝑡 call. Our method was
fastest in practice.

H-Houdini: Scalable Invariant Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

3.2.5 Formal requirements for soundness and com-
pleteness H-Houdini requires any downstream analysis to
satisfy two contracts for soundness and completeness. We
present details for these in Appendix A.

4 VeloCT: Preliminaries
The next three sections describe VeloCT, which instantiates
H-Houdini to solve the safe instruction set synthesis prob-
lem (SISP) [17, 19, 20, 29]. This section gives terminology
(taken mostly from [20]); §5 describes the analysis’ design
in detail; Appendix C describes a worked example of the
analysis on a simple microarchitecture.
In VeloCT, the transition system 𝑇𝑆 is the hardware cir-

cuit described in §2. We also introduce a set of inputs Σ to
𝑇𝑆 , input during transitions, to be either ISA instructions or
the special null input 𝜖 indicating ‘no instruction’ (following
[20]). Next, we define the main concepts in the SISP.
Definition 4.1. Trace (𝜋): A trace of 𝑇𝑆 over a sequence
of inputs starting at state s0 is a sequence of states in 𝑇𝑆

obtained by applying the transition relation 𝑇 (⇝): s0 ⇝𝑎0

s1 . . . ⇝𝑎𝑘
s𝑘+1 where 𝑎𝑖 ∈ Σ denotes 𝑎𝑖 is input during⇝.

Definition 4.2. Trace Indistinguishability: Assume that
an attacker can observe a subset of elements O ⊆ V. For
state s, the values of 𝑂 (a projection on s) are given by s ⇂ O.
We say two traces 𝜋 = s0s1 . . ., 𝜋 ′ = s

′
0s

′
1 . . ., are trace indis-

tinguishable if |𝜋 | = |𝜋 ′ | and ∀𝑗 𝑗 ∈ [0, |𝜋 |], s𝑗 ⇂ O = s
′
𝑗 ⇂ O

where |𝜋 | denotes the length of 𝜋 .
Definition 4.3. Equal-modulo-secret I-states: Let us
define a subset of state elements to hold secret values:
V𝑠𝑒𝑐 ⊆ V. Two states s and s

′ are equal-modulo-secret I-
states if s ≈𝑠𝑒𝑐

s0 ≈𝑠𝑒𝑐
s
′ where s0 is the init state of 𝑇𝑆

and ≈𝑠𝑒𝑐 is an equality relation over the projection of states
excluding secrets, i.e., over V𝑝𝑢𝑏 = V \ V𝑠𝑒𝑐 .

Definition 4.4. Safe Set (Σ̂+): A set of instructions form a
safe set Σ̂+ if, for every sequence of instructions 𝑥 over Σ̂+,
and a pair of equal-modulo-secret I-states (sl, sr), the pair of
traces, (𝜋l, 𝜋r) of 𝑇𝑆 starting from (sl, sr) and given 𝑥 are
trace indistinguishable.

Lastly, we define the soundness and precision of H in veri-
fying safe set Σ̂+. Since H is a relational invariant to prove
the non-interference property from above, it is defined over
a pair of states. For simplicity, we construct a product state s
over a product variable spaceV = Vl∪Vr, whereVx denotes
that each identifier is renamed by adding a prefix x. We say
s = (sl𝑖 · sr𝑖) to denote the composition of sl, sr to form the
product state s.
Definition 4.5. Admits Traces (⊲⊳H): Consider 𝜋l =

s
l
0 , s

l
1 , . . . and 𝜋r = s

r
0 , s

r
1 , For simplicity assume the

shorter trace is padded with special null states (∅). Next,
construct product states, s𝑖 , between corresponding states in
𝜋l and 𝜋r, i.e., ∀𝑖∈ |𝜋l |s𝑖 = (sl𝑖 · sr𝑖). Lastly, define a relation
⊲⊳H: 𝜋 × 𝜋 that relates the pair (𝜋l, 𝜋r) if ∀𝑖∈ |𝜋l |s𝑖 |= H.

Definition 4.6. Soundness of H: H is sound if for all
pairs of traces 𝜋l, 𝜋r that are not trace indistinguisible,
(𝜋l, 𝜋r) ̸∈ ⊲⊳H.

Definition 4.7. Precision of H: H is precise for a safe set
Σ̂+ if for all sequences of instructions 𝑥 over Σ̂+ and starting
with all pairs of equal-modulo-secret I-states, the pairs of
generated traces (𝜋l, 𝜋r) ∈ ⊲⊳H.

Definition 4.8. Positive Example (𝑒 ∈ E): Each example is
a product state s = (sl𝑖 · sr) of two states sl and sr. A positive
example, w.r.t. a property P, is an example which satisfies
the property (s |= P) and on application of the transition
function 𝑇 leads to either the terminating state or another
positive example.

5 VeloCT
In this section, we will describe VeloCT, a framework to
learn relational invariants that prove security properties,
e.g., non-interference, for hardware designs. At a high-level,
VeloCT takes a hardware design in RTL, an annotation that
denotes attacker observable output, e.g., the instruction re-
tirement signal, and a proposed set of safe instructions Σ̂+—
and outputs either an inductive invariant H that proves the
safety of the proposed safe set or outputs None if it doesn’t
exist.
VeloCT implements H-Houdini for invariant learning

and starts learning from P. For simplicity assume O con-
sists of a single state element (call it 𝑣𝑜). Taking inspiration
from Def. 4.2, we need to prove that the values of 𝑣l𝑜 and
𝑣r𝑜 are always equal. This property is expressed formally in
terms of an Eq-type predicate (defined in the next section)
as: Eq(𝑣l𝑜 , 𝑣r𝑜).
In what follows, we first define the predicate language

(§5.1.1) and the implementation of the O𝑚𝑖𝑛𝑒 (§5.1.2). Then,
we discuss how VeloCT generates examples in §5.2. Lastly,
we conclude the section with a proof that H from VeloCT is
sound (Def. 4.6) and precise (Def. 4.7) in Appendix B.

5.1 Predicate Language and Mining
We now describe the predicate language and implementation
of O𝑚𝑖𝑛𝑒 in VeloCT. A good predicate language, coupled
with an automated way to mine predicates from examples,
is essential for proving properties with H-Houdini with
minimal annotations.

5.1.1 Predicate Language We start with the predicate
language proposed by ConjunCT [20]. We observe that for
real-world processor designs we can actually simplify the
predicate language. To prove a set of instructions form a safe
set as defined in Def. 4.3, we do not need the expressiveness
offered by Impl-type predicate introduced in ConjunCT.
Rather, we can include a simpler predicate that restricts a
register to hold certain safe values(s). With this intuition,
VeloCT implements three base types of predicates:

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

Eq(vl, vr). This is the same Eq-type predicate from Con-
junCT. It constrains v to hold the same value in l and r
executions. Intuitively, it disallows executions where v is
influenced by secrets.
EqConst(v, val). The EqConst-type predicate constrains
v to take a constant value val. This allows us to express
invariants where the safety is dependent on v = val.
EqConstSet(v, [val1, . . . , valn]). The EqConstSet-type
predicate is a generalization of the above EqConst predicate.
Rather than restricting v to take a particular value, it restricts
it to a set of values.
Note that both EqConst and EqConstSet also constrain

the variable v to be equal in left and right executions (i.e.,
they are also, implicitly, Eq-type predicates).
The InSafeSet predicate. Critically, the predicate abstrac-
tion must be expressive enough to capture the target in-
variant. This creates an issue specific to SISP. Recall, SISP
requires that compositions of safe instructions satisfy the
property. Yet, a microarchitecture may still support unsafe
instructions. Thus, we need a predicate that constrains the in-
variant to only consider executions made up of compositions
of the safe instructions (ignoring/disallowing compositions
that include unsafe instructions).
To address this, we instantiate a specialized flavor of

EqConstSet – the InSafeSet predicate – to constrain state
elements in the pipeline to include only bit patterns that are
consistent with the safe instructions. For a given set of safe
instructions, these bit patterns (mask and match values) are
automatically generated from the RISC-V specification.

5.1.2 O𝑚𝑖𝑛𝑒 : Predicate Mining The predicate mining al-
gorithm is based on a key insight: positive examples contain
the core of safety, a skeleton that represents the necessary and
sufficient conditions for an execution to be safe. The primary
challenge is then to learn an invariant strong enough to prove
safety and weak enough to generalize to safe executions be-
yond positive examples E (the precision definition Def. 4.7).
At a high-level, the algorithm follows these two rules:

(i) only consider V𝐸𝑞 ⊆ V𝑠𝑙𝑖𝑐𝑒 that are equal in E (line 2),
and (ii) check-and-add: add Eq (line 5), EqConst (line 7), and
InSafeSet (line 11) predicates only when they are consistent
with E. Outside the loop, the check-and-add rule is extended
to the expert predicates generated by A(V𝐸𝑞) (line 15). Fi-
nally, the set of predicates, PV = P𝐸𝑞 ∪ P𝑒𝑥𝑝𝑒𝑟𝑡 is returned.
Even expert-provided predicates are validated against E

before they are added to the final set. This validation en-
sures that experts can freely propose any predicates without
risking unsoundness. We concretely discuss the expert pred-
icates needed for the verification of BOOM in §6.2.
In §B.1 we show how this implementation of O𝑚𝑖𝑛𝑒 is

sound and complete when using H-Houdini. Next, we dis-
cuss how to generate these positive examples for learning,
and conclude by showing that it is sufficient to derive a
precise invariant.

Algorithm 2: OA,E
𝑚𝑖𝑛𝑒

: Predicate mining algorithm.
Input :p𝑡𝑎𝑟𝑔𝑒𝑡 : Target predicate to mine predicates for,

V𝑠𝑙𝑖𝑐𝑒 : Subset of V output by O𝑠𝑙𝑖𝑐𝑒 to consider
when mining predicates.

Output :PV: Set of predicates PV ⊆ P to use with O𝑎𝑏𝑑𝑢𝑐𝑡 .
1 def OA,E

𝑚𝑖𝑛𝑒
(p𝑡𝑎𝑟𝑔𝑒𝑡 ,V𝑠𝑙𝑖𝑐𝑒)→ PV:

2 V𝐸𝑞 = {𝑣 | 𝑣 ∈ V𝑠𝑙𝑖𝑐𝑒 and ∀𝑒∈E 𝑒 [𝑣l] = 𝑒 [𝑣r]};
3 P𝐸𝑞 = ∅;
4 for v in V𝐸𝑞 do
5 P𝐸𝑞 = P𝐸𝑞 ∪ Eq(𝑣l, 𝑣r);
6 if ∃ 𝑐 ∀𝑒∈E 𝑒 [𝑣] = 𝑐 then
7 P𝐸𝑞 = P𝐸𝑞 ∪ EqConst(𝑣l, 𝑐);
8 end
9 p𝑠𝑎𝑓 𝑒 = InSafeSet(𝑣l);

10 if ∀𝑒∈E 𝑒 |= p𝑠𝑎𝑓 𝑒 then
11 P𝐸𝑞 = P𝐸𝑞 ∪ p𝑠𝑎𝑓 𝑒 ;
12 end
13 end
14 P∗𝑒𝑥𝑝𝑒𝑟𝑡 = Amine (V𝐸𝑞);
15 P𝑒𝑥𝑝𝑒𝑟𝑡 = {p | p ∈ P∗𝑒𝑥𝑝𝑒𝑟𝑡 and ∀𝑒∈E 𝑒 |= p};
16 PV = P𝐸𝑞 ∪ P𝑒𝑥𝑝𝑒𝑟𝑡 ;
17 return PV;
18 end

5.2 Example Generation
The high-level goal of example generation is to take the set
of proposed safe instructions and produce a set of positive
examples, E, sufficient for learning an inductive invariant.
Our positive example generation strategy is simple yet

robust. We simulate a pair of concrete executions for each
safe instruction that differ only in the operand values given
to the safe instruction. As we prove in Appendix B, the spe-
cific values of the secret data are irrelevant to soundness or
precision; they only need to differ between the two traces.

Each pair of traces yields multiple positive examples, one
per state in the product trace, as defined in Def. 4.8. Specifi-
cally, we extract a positive example for each pair of states
where the safe instruction under analysis is in flight in the
trace.
Cleaning positive examples. Positive examples must be
carefully prepared so that they are what we refer to as clean.
To be clean, each example must correspond to a pipeline state
that only reflects the execution of the safe instruction under
analysis, as opposed to the safe instruction plus potentially
other unsafe instructions. Should the state reflect the execu-
tion of an unsafe instruction(s), the positive example may
remove predicates that are important to learn the invariant.

Constructing clean positive examples is non-trivial. To run
a safe instruction on the pipeline, our infrastructure executes
start-up and tear-down code containing unsafe instructions.
This code may make an example dirty for two reasons. First,
if an unsafe instruction(s) is in flight in the same cycle as

H-Houdini: Scalable Invariant Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

the safe instruction. Second, if an unsafe instruction (not
concurrently in flight) leaves a residue in the pipeline that is
still present when the safe instruction executes.
We handle the first issue by padding the safe instruction

(before and after its execution) with NOPs. Given sufficient
padding, this ensures that no unsafe instructions are in flight
alongside the safe instruction. Handling the second issue
requires more care for the out-of-order (OoO) processors we
evaluate, as explained below.

5.2.1 Example Masking Ensuring no unsafe instruction
residue remains in the pipeline is non-trivial in OoO pro-
cessors because OoO designs rely on instruction tables (e.g.,
the reorder buffer, instruction queues). Instruction state in
these tables typically persists after the instruction(s) logi-
cally leaves the table. Consider an excerpt of a BOOM issue
slot in a positive example:

Index valid? Uop lrs1 . . .
1 0 <UNSAFE Uop> 0b00001 . . .

This entire table entry is unused/ineffectual as the valid bit
is a 0 in this positive example. The Uop field (Uop for short)
being set to an UNSAFE Uop has no bearing on this example’s
safety. At the same time, this singular example prevents us
from adding a predicate that constrains Uop to allow only
SAFE Uops as such a predicate would not allow this positive
example. Yet, such a predicate is necessary for safety.
We introduce example masking to clean up such dirty

traces. VeloCT uses annotations to identify valid bits in key
structures, e.g., issue/reorder buffer units. Then, VeloCT
pre-processes positive examples to set entries to their reset
values if the entry is marked as invalid. We give a detailed
description of the annotations necessary for example mask-
ing on BOOM in §6.2. Note that this was only required for
complex OoO cores such as BOOM. Simple in-order cores
like Rocketchip do not require example masking or annota-
tions.

Since VeloCT is the first effort to scale invariant learning
to a large OoO like BOOM, we focus on demonstrating feasi-
bility rather than perfecting the approach. In the future, we
aim to explore other alternatives: e.g., a richer predicate lan-
guage that includes Impl-type predicates from ConjunCT
to conditionally constrain Uop to allow only SAFE Uops only
when the entry is valid.

6 Evaluation
In this section, we evaluate VeloCT on real-world processor
designs. First, §6.3 evaluates analysis efficiency and scalabil-
ity. Second, §6.4 evaluates security.

6.1 Implementation & Evaluation Setup
We implement VeloCT in ∼ 2300 lines Python. The current
implementation accepts hardware designs and assertions for
safety in the btor [41] format. The current implementation

Target Size (in # bits) Invariant Size

Rocketchip 10,358 bits 145
Small BOOM 48,465 bits 1,609

Medium BOOM 74,072 bits 2,560
Large BOOM 100,009 bits 4,002
Mega BOOM 133,417 bits 4,640

Table 1. Overview of evaluated design, their complexity (in # of
state bits, in simulation/pre-synthesis), and learned invariant sizes
(# of predicates).

implements algorithm 1 and parallelizes each iteration of the
inner loop (as described in line 18).
Evaluation Setup. We ran our evaluation on a machine
equipped with Dual Intel®Xeon®Gold 6148 CPUs (2 sockets,
40 virtual cores/socket), 256GB of memory and Ubuntu 20.04
LTS (kernel version 5.4.0). We also evaluated on an Anyscale
Ray cluster (configured with compute-optimized C6i EC2
instances) [4]. Lastly, all code was evaluated on Python 3.8
and with CVC5 v1.1.12 as our choice of SMT solver.
Descriptions of Evaluated Designs. We evaluate Ve-
loCT on Rocketchip [5] and all four supported variants
of BOOM [52]: SmallBOOM, MediumBOOM, LargeBOOM,
MegaBOOM. All targets were compiled using the standard
configuration with the Chipyard [3] workflow. We added
additional annotations in Chisel to flatten all modules in the
generated Verilog. Finally, we use yosys [50] to create a miter
(product) circuit, add assertion(s), and emit the output in the
btor format [41] for VeloCT to consume.

For all designs, we instantiated the top-level module to be
the Core, e.g., RocketCore and BOOMCore. See Table 1. This
does not include the L1 caches. Since memory instructions
are known to be unsafe, and no other instructions interact
with these structures, caches can be ignored. Our analysis
could certainly include them if desired.
Baselines. We compare performance/scalability to the state-
of-the-art in safe instruction set synthesis ConjunCT [20].
ConjunCT’s analysis is based on Houdini/Sorcar and can
learn an invariant (Phase II of the ConjunCT analysis) in ∼ 8
hours; it was unable to evaluate on any BOOM variant due
to the cost of monolithic SMT queries. We compare security
/ synthesized safe sets to ConjunCT and UPEC [17]. The
latter hand crafts (does not learn) and checks an invariant
for MediumBOOM.

6.2 Expert Annotation Efforts
VeloCT learns an invariant for Rocketchip with no expert
annotations. VeloCT needs a modest number of annotations
to learn an invariant for BOOM. There are two kinds of
annotations: (i) Annotations required to augment the predi-
cate set with BOOM-specific EqConstSet predicates, and (ii)
Annotations required for example cleaning.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

Annotations to Augment Predicate Set. Recall from
§5.1.1, our current implementation does not automatically
insert/mine EqConstSet predicates. We augmented O𝑚𝑖𝑛𝑒

to emit these as expert annotations in two circumstances.
First, BOOM decodes RISC-V instructions into micro-ops
(uops). Therefore, to constrain executions to only consist
of instructions from the safe set, we introduce InSafeUop
to complement the InSafeSet predicate. The InSafeUop
predicate allows state elements to only take constants that
correspond to safe uops. Second, we manually constrain the
ALUOpcode signal to correspond to the proposed safe set.
Annotations for Example Masking. Example masking
(§5.2.1) is used to ensure that the positive examples are clean.
To do this, we identify and annotate various bits in the design
that semantically hold valid bits and pair each valid bit
with its corresponding entries. Concretely, we identified the
valid bits for the following microarchitectural structures:
ALU issue buffer, CSR issue buffer, FPU issue buffer, JMP unit,
and rs2 operand type bits. When the valid bit is semantically
0, we reset the value of its corresponding entries. This step
took a grad student (unfamiliar with BOOM) less than a
day to find all the required annotations for one design, and
another day to generalize to larger BOOM variants.

6.3 VeloCT: Performance Evaluation
We now evaluate for performance and scalability.
Scalability and Parallelism. Figure 2 shows invariant
search time for each design, scaling the number of avail-
able cores. We do not evaluate larger designs on smaller
core counts due to time constraints and only evaluate Large-
BOOM and MegaBOOM on 160 cores. The main takeaway is
that doubling the core count proportionally improves anal-
ysis time up to a point, which provides an estimate of the
parallel span (i.e., time given infinite cores). It is noteworthy
that the span increases with design size. This indicates that
larger designs will benefit from yet additional parallelism.
We note that we were able to generate an invariant for Rock-
etchip in under 10 seconds, representing a roughly 2880×
speedup compared to ConjunCT.

Figure 3 performs a deeper dive, comparing the time given
a fixed 80 cores (on our local cluster) with the time given an
“infinite” number of cores (on the Anyscale cluster, which
provides more cores on demand). We do not evaluate Rock-
etchip on Anyscale as 80 cores is sufficient. As expected, time
given infinite cores drops relative to the time given 80 cores
proportionally with design size. Especially interesting, the
time given infinite cores shows that the analysis time scales
proportionally to the cubic of the design size.
Median Task and SMT Time / Task. We now explore the
extent to which the above results can improve further. The
fundamental cost in the analysis is the time to perform SMT
queries. Thus, it is important to understand what percentage
of CPU cycles are going towards SMT queries. This is shown

Target Verified Safe Instruction Set

Rocketchip add, addi, sub, xor, xori, and, andi,

or, ori, sll, slli, srl, srli, sra, srai,

lui, auipc, slt, slti, sltu, sltui

BOOM
(All Variants)

add, addi, sub, xor, xori, and, andi,

or, ori, sll, slli, srl, srli, sra, srai,

lui, slt, slti, sltu, sltui, mul, mulh,

mulhu, mulhsu

Table 2. Safe instruction sets synthesized by VeloCT.

in Figure 4, which compares SMT time to overall task time
(i.e., all time spent in the H-Houdini function body). We
see that non-SMT activities account for about 50% of the
time, even for larger designs, indicating room to improve
performance with better engineering. As expected, the time
per SMT query grows with design size (which influences the
complexity of the average query) and, interestingly, grows
linearly with size across the larger designs. We note, the
above only shows median SMT query time yet we consis-
tently saw long tails. For example, the 95th and 99th per-
centile for time-per-task for MegaBOOM was 565.94s and
1000.92s respectively, while the longest task took 9310s.
Total Number of SMT Queries. Orthogonally, we can
improve analysis time by reducing the total number of SMT
queries that need to be performed. A task performs multiple
SMT queries only when backtracking occurs. Thus, we show
frequency of backtracking relative to the total number of
tasks in Figure 5. The main takeaway is that the number
of backtracks is relatively small but non-negligible, and ac-
counts for roughly the same % of tasks in each design. If
the set of positive examples was exhaustive, the number of
backtracks would be 0.

6.4 VeloCT: Security Evaluation
We conclude the evaluation with a security evaluation, veri-
fying that the safe set results match prior work.
We show the set of safe instructions that we verified for

each target in Table 2. To summarize, we verified that most
non-memory or control-flow instructions are safe. Our re-
sult for Rocketchip matches ConjunCT, except that we found
mul-family instructions to be unsafe. We verified this man-
ually as correct, and occurs because we evaluated on RV64
(whereas ConjunCT evaluated on RV32). We also monolithi-
cally verified the correctness of Rocketchip invariant. Our
result for BOOMmatches Kunz et al. [17] for all non-FP/non-
CSR type instructions (which we categorized manually as
unsafe). Interestingly, mul-family instructions are safe on
BOOM. On BOOM, we were unable to verify the safety of
the auipc instruction. On talking with the BOOM develop-
ers, we found out that even though the latency of auipc is
supposed to be operand-independent, the instruction indeed
has variable timing behavior. We leave investigating why

H-Houdini: Scalable Invariant Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

1 2 4 8 16 32 6480 16
0

Number of Cores

0

5000

10000

15000

20000

E
xe

cu
tio

n
Ti

m
e

(s
)

Design
Rocket
Small
Medium
Large
Mega

Figure 2. Execution Time of VeloCT (in s)
vs. # of Parallel Cores on designs of various
sizes. VeloCT’s execution time consistently
halves on doubling the number of cores until
a saturation point is reached.

25000 50000 75000 100000125000
Design Size (# of state bits)

0

5000

10000

15000

20000

E
xe

cu
tio

n
Ti

m
e

(s
)

R
oc

ke
t

S
m

al
l M

ed
iu

m La
rg

e

M
eg

a

Cubic Fit: a * x^2.94
 cores

80 cores

Figure 3. Execution Time (in s) of VeloCT vs.
Design Size. Plot shows results for an 80-core
evaluation and for∞ cores (on an Anyscale
cluster). VeloCT scaling with∞ cores shows
cubic growth.

25000 50000 75000 100000 125000
Design Size (# of state bits)

0

5

10

15

20

Ti
m

e
(s

)

R
oc

ke
t

S
m

al
l

M
ed

iu
m

La
rg

e

M
eg

a

Median SMT Time
Median Task Time

Figure 4.Median SMT Query Time and Task
Time (in s) vs. Design Size (# of state bits).
The time per SMT query scales linearly with
the design size.

25000 50000 75000 100000125000
Design Size (# of state bits)

0

2000

4000

6000

8000

10000

12000

 #
 o

f T
as

ks

R
oc

ke
t

S
m

al
l

M
ed

iu
m

La
rg

e

M
eg

a

Total Tasks
Backtracks

Figure 5. # of Tasks and # of Instances of Backtracking vs. Design
Size (# of bits). Number of tasks grows linearly with design size.
Number of tasks backtracked is relatively low indicating good cov-
erage from positive examples.

this is, and whether an alternate implementation of auipc
could be made safe, to future work.

7 Related Work

SAT-based Invariant Learning & IC3. SAT-based meth-
ods for learning invariants have been explored in depth
over the years, including abstract interpretation [14], in-
terpolants [39], predicate abstractions [6], abductive reason-
ing [18], constraint solving [33], incremental learning [8, 22]
and its variants [34]. More recently, IC3 implementations at
the word-level [13, 32] have also been studied. H-Houdini
and IC3 are similar in that they both use relative induction
to incrementally learn invariants, but their approaches differ
significantly. IC3 relies on negative examples to generalize
counterexamples and strengthen invariants, which is chal-
lenging in practice. In contrast, H-Houdini combines mining
positive examples with abductive reasoning to build invari-
ants incrementally. Additionally, H-Houdini is fully parallel
at the predicate level, while IC3 uses parallelism to explore

multiple inductive strengthenings, requiring synchroniza-
tion and communication between tasks.
MLIS and ICE Learning. MLIS techniques [12, 23, 24, 27,
28, 30, 40, 53] have a long history in invariant learning, start-
ing with DAIKON [23] to find likely invariants from traces
and Houdini [28] which is an algorithm to find inductive
invariants for unannotated programs. The MLIS setting has
strong connections to synthesis in other domains [2, 43, 44].
Garg et al. [30] first introduced ICE-learning which was
later generalized and successfully applied to learn invari-
ants in various settings [12, 24]. The main drawback with
ICE-learning techniques is the need for monolithic inductive
queries, which do not scale well with a large predicate lan-
guage and to large systems under verification like BOOM.
H-Houdini solves this using relative inductive queries, mak-
ing it a RICE-learner (Relative ICE) as introduced by Vizel
et al. [48]. To the best of our knowledge, H-Houdini is the
first MLIS-based incremental invariant learning algorithm
developed in the RICE framework.
Abductive Reasoning in Program Analysis. Abduc-
tive reasoning, introduced by Pierce [42], has been applied
in program analysis to infer missing preconditions [31]
and to scale shape analysis for large software through bi-
abduction [9, 10]. Dillig et al. [18] used it to synthesize in-
ductive invariants for loops, but their approach lacks com-
pleteness guarantees, cannot exploit hierarchy or parallelism,
and requires extensive backtracking. In contrast, H-Houdini
offers strong completeness guarantees, utilizes hierarchical
and parallel processing and reduces backtracking by lever-
aging positive examples.
Hardware Constant-Time Verification. Several recent
projects focus on verifying constant-time hardware [16, 17,
25, 26, 46, 47] and constant-time contracts [20, 45, 49]. But,
none of these existing works scale to large OoO cores such
as BOOM—which is a major contribution of our work.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

8 Discussion & Conclusion
To conclude, this work proposed H-Houdini: a novel in-
variant learning algorithm that combines the best of MLIS
and SAT-based invariant learning approaches to scale invari-
ant learning to large systems. We manifest H-Houdini as
the analysis VeloCT, which demonstrates scalable invariant
learning for the safe instruction set problem (SISP). VeloCT
demonstrates, for the first time, that we can scale invariant
learning to large hardware designs such as BOOM.
While we expect H-Houdini to generalize beyond the

SISP, more research is needed to make it completely “push
button” and capable of verifying arbitrary properties. We
see two synergistic categories of future work. First, work
that further improves automation. That is, while H-Houdini
can efficiently and automatically search for an invariant, it
requires the user to specify a predicate abstraction, imple-
ment O𝑚𝑖𝑛𝑒 and specify a means to create positive examples.
Nominally, these steps should also be automated. Second,
work that demonstrates H-Houdini on verification tasks be-
yond the SISP. We are confident that H-Houdini will apply
largely “out of the box” to other 2-safety properties, such as
other forms of traditional non-interference. Beyond 2-safety,
developing extensions to N-safety properties (common in
security verification), liveness properties, LTL-style prop-
erties and functional correctness checking are all exciting
directions for future study.

9 Acknowledgments
We thank the anonymous reviewers and our shepherd for
their excellent feedback. This work was partially funded by
NSF grants CNS-1954521, CNS-1942888, CNS-2154183 and
CCF-8191902; as well as by gifts from Intel and Apple.

References
[1] ChaCha20 (BearSSL). https://bearssl.org/gitweb/. Accessed: 2024-12-

14.
[2] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,

Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In FMCAD’13.

[3] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry
Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. Chip-
yard: Integrated design, simulation, and implementation framework
for custom socs. IEEE Micro, 40(4):10–21, 2020.

[4] Anyscale. Anyscale homepage. https://www.anyscale.com/. Accessed:
2024-06-23.

[5] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim,
John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert Magyar,
Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian
Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Water-
man. The Rocket Chip Generator. Technical Report UCB/EECS-2016-
17, EECS Department, University of California, Berkeley, 2016.

[6] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Raja-
mani. Automatic predicate abstraction of C programs. In PLDI’01.

[7] Daniel J. Bernstein. djbsort. https://sorting.cr.yp.to/. Accessed: 2024-
12-14.

[8] Aaron R Bradley. SAT-based model checking without unrolling. In
VMCAI’11.

[9] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok
Yang. Compositional shape analysis by means of bi-abduction. In
POPL’09.

[10] Cristiano Calcagno, Dino Distefano, and Viktor Vafeiadis. Bi-abductive
resource invariant synthesis. In APLAS’09.

[11] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,
Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit
Jhala, and Deian Stefan. FaCT: A DSL for Timing-Sensitive Computa-
tion. In PLDI’19.

[12] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke
Sato. Ice-based refinement type discovery for higher-order functional
programs. Journal of Automated Reasoning, 2020.

[13] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano
Tonetta. Infinite-state invariant checking with IC3 and predicate
abstraction. Formal Methods Syst. Des., 2016.

[14] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL’77.

[15] William Craig. Linear reasoning. A new form of the herbrand-gentzen
theorem. J. Symb. Log., 1957.

[16] Lucas Deutschmann, Johannes Müller, Mohammad R. Fadiheh, Do-
minik Stoffel, and Wolfgang Kunz. Towards a Formally Verified Hard-
ware Root-of-Trust for Data-Oblivious Computing. In DAC’22.

[17] Lucas Deutschmann, JohannesMüller,Mohammad R Fadiheh, Dominik
Stoffel, and Wolfgang Kunz. A scalable formal verification methodol-
ogy for data-oblivious hardware. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2024.
[18] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. Induc-

tive invariant generation via abductive inference. In OOPSLA’13.
[19] Sushant Dinesh, Grant Garrett-Grossman, and ChristopherW. Fletcher.

SynthCT: Towards Portable Constant-Time Code. In NDSS’22.
[20] Sushant Dinesh, Madhusudan Parthasarathy, and Christopher Fletcher.

CONJUNCT: Learning inductive invariants to prove unbounded in-
struction safety against microarchitectural timing attacks. In S&P’24.

[21] Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher. VeloCT.
https://github.com/FPSG-UIUC/veloct. Accessed: 2024-12-15.

[22] Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient imple-
mentation of property directed reachability. In FMCAD’11.

[23] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David
Notkin. Quickly detecting relevant program invariants. In ICSE’00.

[24] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Mad-
husudan. Horn-ICE learning for synthesizing invariants and contracts.
In OOPSLA’18.

[25] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark W. Barrett, Sub-
hasish Mitra, and Wolfgang Kunz. Processor hardware security vul-
nerabilities and their detection by unique program execution checking.
In DATE’19.

[26] Mohammad Rahmani Fadiheh, Alex Wezel, Johannes Müller, Jörg Bor-
mann, Sayak Ray, Jason M. Fung, Subhasish Mitra, Dominik Stoffel,
andWolfgang Kunz. An exhaustive approach to detecting transient ex-
ecution side channels in RTL designs of processors. IEEE Transactions

on Computers, 2023.
[27] Grigory Fedyukovich, Samuel J Kaufman, and Rastislav Bodík. Sam-

pling invariants from frequency distributions. In FMCAD’17.
[28] Cormac Flanagan and K Rustan M Leino. Houdini, an annotation

assistant for ESC/Java. In FME’01.
[29] Michael Flanders, Reshabh K. Sharma, Alexandra E. Michael, Dan

Grossman, and David Kohlbrenner. Avoiding instruction-centric mi-
croarchitectural timing channels via binary-code transformations. In

https://bearssl.org/gitweb/
https://www.anyscale.com/
https://sorting.cr.yp.to/
https://github.com/FPSG-UIUC/veloct

H-Houdini: Scalable Invariant Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

ASPLOS’14.
[30] Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel

Neider. ICE: A robust framework for learning invariants. In CAV’14.
[31] Roberto Giacobazzi. Abductive analysis of modular logic programs.

In ILPS’94.
[32] Aman Goel and Karem A. Sakallah. AVR: abstractly verifying reacha-

bility. In TACAS’20.
[33] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan.

Program analysis as constraint solving. In PLDI’08.
[34] Alexander Ivrii and Arie Gurfinkel. Pushing to the top. In FMCAD’15.
[35] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. In ISCA ’17.

[36] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution.
In S&P’19.

[37] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO’96.

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading Kernel Memory from User Space.
In USENIX Security’18.

[39] Kenneth L. McMillan. Interpolation and SAT-based model checking.
In CAV’03.

[40] Daniel Neider, Shambwaditya Saha, Pranav Garg, and P. Madhusu-
dan. SORCAR: Property-Driven Algorithms for Learning Conjunctive
Invariants. In SAS’19.

[41] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2,
btormc and boolector 3.0. In CAV’18.

[42] Charles Sanders Peirce. Collected papers of charles sanders peirce,
volume 5. Harvard University Press, 1974.

[43] Armando Solar-Lezama. Program synthesis by sketching. PhD thesis,
USA, 2008.

[44] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia,
and Vijay A. Saraswat. Combinatorial sketching for finite programs.
In ASPLOS’06.

[45] Qinhan Tan, Yuheng Yang, Thomas Bourgeat, Sharad Malik, and
Mengjia Yan. RTL verification for secure speculation using contract
shadow logic. In Arxiv’24.

[46] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit
Jhala. IODINE: Verifying Constant-Time Execution of Hardware. In
USENIX Security’19.

[47] Klaus V. Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit
Jhala. Solver-aided constant-time hardware verification. In CCS’21.

[48] Yakir Vizel, Arie Gurfinkel, Sharon Shoham, and Sharad Malik. IC3-
flipping the E in ICE. In VMCAI’17.

[49] Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke,
and Marco Guarnieri. Specification and verification of side-channel
security for open-source processors via leakage contracts. In CCS’23.

[50] Claire Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.
Accessed: 2024-12-14.

[51] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W.
Fletcher. Data Oblivious ISA Extensions for Side Channel-Resistant
and High Performance Computing. In NDSS’19.

[52] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Son-
icboom: The 3rd generation berkeley out-of-order machine. May 2020.

[53] He Zhu, Stephen Magill, and Suresh Jagannathan. A data-driven CHC
solver. In PLDI’18.

https://yosyshq.net/yosys/

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

A H-Houdini Analysis
We now provide proof sketches for soundness and complete-
ness for H-Houdini.

A.1 Contracts
First, we require that any implementation of H-Houdini
satisfy the following contracts, given a predicate universe P.
First construct P+ = {p | p ∈ P and ∀𝑒∈E 𝑒 |= p}, the set of
all predicates consistent with E.

Contract 1. (Slicing and mining oracle completeness.) Con-
sider a p𝑡𝑎𝑟𝑔𝑒𝑡 . Let A = {A | O𝑎𝑏𝑑𝑢𝑐𝑡 (p𝑡𝑎𝑟𝑔𝑒𝑡 , P+) = A} be the
set of all possible abducts for p𝑡𝑎𝑟𝑔𝑒𝑡 . Further assume each A
is minimal.

• Consider V𝑠𝑙𝑖𝑐𝑒 = O𝑇𝑆
𝑠𝑙𝑖𝑐𝑒

(p𝑡𝑎𝑟𝑔𝑒𝑡) on line 9. Construct
V∗ = {𝑣 ∈ V | ∃A ∈ A ∃ p ∈ A p is over 𝑣}. We
require V∗ ⊆ V𝑠𝑙𝑖𝑐𝑒 .

• Consider PV = OA,E
𝑚𝑖𝑛𝑒

(p𝑡𝑎𝑟𝑔𝑒𝑡 ,V𝑠𝑙𝑖𝑐𝑒) on line 10, where
V𝑠𝑙𝑖𝑐𝑒 is given by O𝑠𝑙𝑖𝑐𝑒 . We require ∀ A ∈ A : A ⊆ PV.

Contract 2. (Consistency with positive examples.) Consider
PV = OA,E

𝑚𝑖𝑛𝑒
(p𝑡𝑎𝑟𝑔𝑒𝑡 ,V𝑠𝑙𝑖𝑐𝑒) on line 10. We require PV ⊆ P+.

A.2 Soundness
We argue that H-Houdini is a concrete instance of the in-
cremental learner from §3.1. The initial property we aim
to prove, H0, serves as the starting point. Each incremen-
tal step H𝑖 , synthesized as an abduct, is formed by a con-
junction of a subset of predicates from PV. That is, let
H𝑖 =

∧
𝑘 p𝑘 . Let A𝑘

𝑖 be the result of O𝑎𝑏𝑑𝑢𝑐𝑡 on p𝑘 . Then,
by Contract 1, H𝑖+1 =

∧
𝑘 A𝑘

𝑖 , formed by taking conjunc-
tions over abducts for p𝑘 . Finally, by Contract 2, H-Houdini
satisfies the premise for soundness (P-S).

A.3 Completeness
We argue that H-Houdini is complete with respect to P. That
is, if an invariant H exists in P, H-Houdini will find H. This
follows from Contract 1, which stems from our focus on
1-step relative induction.

H-Houdini will only fail to synthesize an inductive invari-
ant if O𝑎𝑏𝑑𝑢𝑐𝑡 returns None for a given property/predicate
p𝑡𝑎𝑟𝑔𝑒𝑡 . Thus, H-Houdini will return None for the top-level
property only if the O𝑎𝑏𝑑𝑢𝑐𝑡 query for that property fails.
This can occur in two cases: either during the initial syn-
thesis for the top-level property or during re-synthesis after
a string of recursive failures (backtracking). Since O𝑎𝑏𝑑𝑢𝑐𝑡

is complete, H-Houdini will fail only if no invariant exists
within P. Therefore, H-Houdini is also complete.

B Soundness & Precision of VeloCT
B.1 O𝑚𝑖𝑛𝑒 satisfies H-Houdini Contracts
First, notice that all p added to PV are checked to be consis-
tent with E (line 2, line 5, line 7, line 15) before adding to
the set. Thus, PV satisfies Contract 2 of H-Houdini.

We now check compliance to Contract 1. By earlier ar-
guments, any abduct A ∈ A for 1-step induction of p𝑡𝑎𝑟𝑔𝑒𝑡
can, by definition, only have predicates over variables in
1-step COI of variables in p𝑡𝑎𝑟𝑔𝑒𝑡 . O𝑠𝑙𝑖𝑐𝑒 precisely returns the
1-step COI in V𝑠𝑙𝑖𝑐𝑒 and therefore, the first part of Contract 1
holds. The second part of contract follows from first. That
is, O𝑚𝑖𝑛𝑒 generates all possible predicates consistent with
E over V𝑠𝑙𝑖𝑐𝑒 , i.e., there is no p over V𝑠𝑙𝑖𝑐𝑒 such that p ∈ P+

and p ̸∈ PV. Why? because O𝑚𝑖𝑛𝑒 is such that the set of
predicates over 𝑣 ∈ V𝑠𝑙𝑖𝑐𝑒 is the same in PV and P+. From
above arguments, O𝑚𝑖𝑛𝑒 satisfies Contract 1 of H-Houdini.
By satisfying both Contract 1 and 2, VeloCT’s use of H-

Houdini is sound and complete.
Finally, we show the precision (Def. 4.7) and soundness

(Def. 4.6) of H obtained from VeloCT.
B.1.1 H is Sound This is trivially true: P = Eq(𝑣l𝑜 , 𝑣

r
𝑜)

is a part of H and is inductive. Therefore, any state that
eventually leads to violating P will not be allowed by H. This
proves H is sound (Def. 4.6).
B.1.2 H is Precise We break this proof up into three parts.
(I): For any instruction allowed byH,H allows all its executions,

i.e., with any operand value. Every 𝑒 ∈ E forces the secret
values in the register file to be unequal on l and r. Therefore,
we cannot add an Eq, or further, EqConst or EqConstSet, on
instruction operand values. Therefore, we cannot restrict an
instruction’s operand values. (I) follows.
(II): H allows all executions of every safe instruction. We have
at least one example per safe instruction. Therefore, H needs
to allow at least one execution of every safe instruction
to be consistent with E. Further, from (I), H will allow all
executions from every safe instruction. (II) follows.
(III): H allows compositions of safe instructions. From (II), as
H =

∧
𝑖 p𝑖 , every p𝑖 also satisfies (II). Consider p0, p1, p2 over

state elements 𝑣0, 𝑣1, 𝑣2 respectively. Further, let the topology
be such that 𝑣0 is some composition of 𝑣1, 𝑣2. Now, as p1, p2
allow all executions of all safe instructions, 𝑣1 and 𝑣2 are
allowed to independently take values that occur in 2 differ-
ent safe executions. Consequently, for p0 to be inductive, p0
should allow 𝑣0 to take any value that occurs in the compo-
sition of allowed safe executions. Since p0 was an arbitrary
choice, this argument holds for all p𝑖 . Since every p𝑖 allows
all compositions of all safe instructions, (III) follows. Since
(III) is equivalent to Def. 4.7, H is precise.

C H-Houdini Running Example
In this section, we will demonstrate how H-Houdini

works for the VeloCT setting using the example circuit
shown in Figure 6 (a). The figure shows a simplified ver-
sion of an execute stage in a CPU shown in Figure 6. This
execute stage consists of 2 functional units, an ADD and a
MUL, operating on 2 32-bit operands Op1 and Op2. The final
output from the execute stage is the result in Res and a
control signal, Valid, to indicate when the result is valid.
Similarly, each FU outputs a result, Res𝑎𝑑𝑑/𝑚𝑢𝑙 , and a valid

H-Houdini: Scalable Invariant Learning ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

ADD

MUL
Resadd

Op1

Opcode

From
fetch+decode

Data path

Control path Op2

Validadd
Res

Resmul

Validmul
ValidM

A

(a) A highly simplified execute stage in a pipeline containing two
functional units (FU): ADD and MUL. Each FU takes two operands
as inputs and outputs the result in Res𝑎𝑑𝑑/𝑚𝑢𝑙 and a valid signal
Valid𝑎𝑑𝑑/𝑚𝑢𝑙 to indicate when the result is ready. The final result
and valid signals are selected through the MUX depending on the
current Opcode.

Opcode

Validmul

in_use

count == 31?

== 0?

== 0?

== M? F

T

!in_use

zero_skip

start

F

T
in_use

(b) Slice of MUL FU to compute in_use and
Valid𝑚𝑢𝑙 . From the figure we deduce that
the values of both in_use and Valid𝑚𝑢𝑙

are dependent on Op1, Op2, Opcode, in_use,
and count.

countcount

F

T
One

Zero

in_use

(c) Slice of MUL FU to
compute count. From
this figure, we can see
that count is depen-
dent on in_use and
count.

Figure 6. High-level diagrams to illustrate H-Houdini. (a) shows
the high-level circuit diagram for the example. A slice of the im-
plementation of the MUL FU (described in Figure 7) is shown in
(b) (in_use and Valid𝑚𝑢𝑙) and (c) (count). The red region in (b)
contains the update expression in the case in_use is false, and the
green region contains the update expression when in_use is true.
The dashed purple line indicates the next state update.

signal, Valid𝑎𝑑𝑑/𝑚𝑢𝑙 , which is then forwarded to the final
result/valid through a MUX.
Description of FU. The operational implementation of
the ADD/MUL units are shown in verilog-like pseudo code
in Figure 7. At a high-level, the ADD FU computes the result
and valid bits in a single cycle. The MUL FU implements a
classic iterative multiplier that takes 32 cycles to output the
result, but, implements a zero-skip optimization: if one of
the operands is a zero, the multiplier immediately outputs
the result (0) in a single cycle. To simplify later discussion,
the slice of the circuit used to generate Valid𝑚𝑢𝑙 is shown
visually as a circuit diagram in Figure 6 (b-c).
Property to Prove. For this example we will prove the
2-safety property from VeloCT using H-Houdini. We start
by considering two identical copies of the circuit shown

ADD(Op1, Op2, Opcode) → (Res𝑎𝑑𝑑 , Valid𝑎𝑑𝑑):

@clock

if Opcode == ADD:

Res𝑎𝑑𝑑 <= Op1 + Op2
Valid𝑎𝑑𝑑 <= 1

else:

Valid𝑎𝑑𝑑 <= 0

MUL (Op1, Op2, Opcode) → (Res𝑚𝑢𝑙 , Valid𝑚𝑢𝑙):

start = Opcode == MUL and !in_use

zero_skip = Op1 == 0 or Op2 == 0

@clock

case in_use:

if multiplier [0] == 1:

Res𝑚𝑢𝑙 <= Res𝑚𝑢𝑙 + multiplicand

multiplicand <= multiplicand << 1

multiplier <= multiplier >> 1

count <= count + 1

if count == 31: # Done

in_use <= 0

Valid𝑚𝑢𝑙 <= 1

default: # Reset

multiplicand <= zero -extend(Op1, 64)

multiplier <= Op2
count <= 0

Res𝑚𝑢𝑙 <= 0

if start and zero_skip:

Res𝑚𝑢𝑙 <= 0

Valid𝑚𝑢𝑙 <= 1

elif start:

in_use <= 1

Figure 7. Verilog-like description of the ADD and MUL FU. ADD
computes on its two operands and outputs the results and valid in
a single cycle. The MUL FU implements a classic 32-bit iterative
multiplication algorithm with a zero-skip optimization: non-zero
operand values take a slow path (32 cycles) to output the result and
valid. Otherwise, if either of the operands are zero, the result and
valid bits are computed in a single cycle.

in Figure 6.6 We will add a superscript of 𝐿 and 𝑅 to all the
state elements and wires, e.g., Res𝐿 vs. Res𝑅 , to differenti-
ate between the copies. The two copies of the circuit are
non-interacting and execute independently of each other.
Concretely, we will learn an inductive invariant to prove
that the two copies of Valid are always equal at every cycle,
represented as Eq(Valid) ⇐⇒ Valid𝐿 = Valid𝑅 .
To make the explanation more intuitive, we will present

the algorithm as an interactive exercise between the authors
and readers. Along the way we will construct the solution
graph Figure 8, where each node in the graph represents
a property and an edge from node 𝑖 to node 𝑗 means that
property 𝑗 requires property 𝑖 to hold for 𝑗 to be inductive.
The graph is also annotated with callouts (of the form “i:X”)
to indicate the steps. We will refer to these in our explanation
below.

Our objective is to prove the property Eq(Valid). For sim-
plicity, we first consider how to ensure this property holds
after simulating the circuit for a single cycle. Specifically, if

6For experts: this is a miter or a product program construction.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Sushant Dinesh, Yongye Zhu, and Christopher W. Fletcher

Eq(Valid)

Eq(Validmul) Eq(Validadd)

Eq(Op1)
Eq(Opcode)

Eq(in_use) Eq(count)

Opcode := A

C: props to make succs. true

1:A

2:A

3:A

4:A

11:B

12:B 13:A

10:M

15:M

Eq(Op2)

5:A

6:A

7:A
8:A 9:A

After 13:A

Figure 8. Graphical representation of H-Houdini invariant learn-
ing for example circuit in Figure 6. Each node in this graph repre-
sentation is a predicate, and an edge from predicate 𝑖 to 𝑗 denotes
that 𝑖 is required for 1-step inductivity of 𝑗 . The graph is labeled
with callouts of the form “i-X”, where i denotes the step number
and the X denotes the action: A for abduct, B for backtrack, M for
memoization. Hence, the graph is meant to be read in order of the
i’s.

we start from a state where Eq(Valid) holds and take one
step, can we guarantee that Eq(Valid) will also hold in the
subsequent state? From the circuit, we observe that the value
of Valid in the next cycle is determined by the values of
Opcode, Valid𝑎𝑑𝑑 , and Valid𝑚𝑢𝑙 , which constitute the state
elements in the 1-step cone-of-influence (COI) of Valid.

This leads us to our first abductive query (1-A): what con-
straints must be imposed on these state elements to ensure
that Eq(Valid) holds in the next cycle? A solution to this
query is the conjunction Eq(Valid𝑚𝑢𝑙) AND Eq(Valid𝑎𝑑𝑑).
Hence, if we start from a state where Valid𝑚𝑢𝑙 and Valid𝑎𝑑𝑑
are equal, Eq(Valid) will always hold after the next state
transition.
Next, we extend this reasoning: can we ensure that

Eq(Valid) holds for two consecutive cycles? This is
equivalent to asking: can we ensure Eq(Valid𝑚𝑢𝑙) AND
Eq(Valid𝑎𝑑𝑑) hold for one additional cycle. Since this is a
conjunction, we can decompose it into two sub problems:
one for Eq(Valid𝑚𝑢𝑙) and one for Eq(Valid𝑎𝑑𝑑).
This pattern of abductive reasoning is repeated across

queries 2-9A, allowing us to construct a solution graph (Fig-
ure 8). We make two remarks. First, Eq(in_use) depends
on Eq(count), and vice versa. However, this circular de-
pendency does not cause issues because each property is
processed only once. The solution for Eq(count) derived
using Eq(in_use) does not require us to rethink the solu-
tion for Eq(in_use), as its solution is already known and
remains unchanged. Second, more generally, no property
needs to be reasoned about twice (aside from backtracking,
discussed next) as no solution changes once it is found. For
instance, abductive reasoning in 9:A does not introduce new

queries, allowing us to reuse previously memoized results
(shown as 10:M).

Upon completing our abductive reasoning, we can deter-
mine, for each property 𝑝 , the set of properties that must
hold to ensure that 𝑝 holds in the next step. This gives us
a conjunctive set of conditions, ensuring relative inductiv-
ity. Let H = ∧𝑝 represent the conjunction of all required
properties. After one step, if all properties remain true in the
next state, we have established H =⇒ H′. Consequently,
we have derived the necessary inductive invariant to prove
Eq(Valid).
Backtracking. What if the property Eq(Op1) failed to
be inductive? This would invalidate the solution we have
Eq(Valid𝑚𝑢𝑙), so we would need to step back, i.e., backtrack,
and find other ways to make Eq(Valid𝑚𝑢𝑙) hold (11-B). Un-
fortunately, without a way to restrict values of Eq(Op1), we
cannotmake Eq(Valid𝑚𝑢𝑙) hold. Thus, we need to backtrack
all the way back to Eq(Valid) (12-B). Can we find a differ-
ent way to make Eq(Valid) hold in the next step? (13-A).
Yes! Another solution is to have Eq(Valid𝑎𝑑𝑑) AND Opcode
:= ADD hold. We can continue to repeat the same abductive
inference process (14-A) reusing memoized solutions from
before (15-M) to reduce work.
Parallelism. For the purposes of this example, we walked
through each step of the reasoning serially. All of this can
be done in parallel. For example, the inferences 2-3:A are
completely independent from 4-9:A and can be done in par-
allel to 4-9:A, while exploiting memoization opportunities
to avoid repeated queries (10:M).
Positive Examples. Lastly, while parallelism and memoiza-
tion are able to improve performance and reduce slowdown
due to backtracking, it would be even better if we could avoid
backtracking altogether. Positive examples are concrete exe-
cution traces that the invariant must admit. Any property
violated when considering such a trace cannot be included
in the final invariant and therefore can be eliminated early.
For example, a positive example executing ADD can tell us
Eq(Valid𝑚𝑢𝑙) does not hold, allowing us to correctly infer
the second solution and eliminate the backtrack.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Terminology
	2.2 Machine Learning Inspired Invariant Synthesis

	3 H-Houdini
	3.1 Hierarchical Decomposition is Sound
	3.2 H-Houdini Algorithm

	4 VeloCT: Preliminaries
	5 VeloCT
	5.1 Predicate Language and Mining
	5.2 Example Generation

	6 Evaluation
	6.1 Implementation & Evaluation Setup
	6.2 Expert Annotation Efforts
	6.3 VeloCT: Performance Evaluation
	6.4 VeloCT: Security Evaluation

	7 Related Work
	8 Discussion & Conclusion
	9 Acknowledgments
	References
	A H-Houdini Analysis
	A.1 Contracts
	A.2 Soundness
	A.3 Completeness

	B Soundness & Precision of VeloCT
	B.1 Omine satisfies H-Houdini Contracts

	C H-Houdini Running Example

