
SYNTHCT: Towards Portable Constant-Time Code
Sushant Dinesh, Grant Garrett-Grossman, Christopher W. Fletcher

University of Illinois at Urbana-Champaign
{sdinesh2, grantlg2, cwfletch}@illinois.edu

Abstract—Recent attacks have demonstrated that modern
microarchitectures are fraught with microarchitectural side chan-
nels. Constant-time (CT) programming is a software development
methodology where programs are carefully written to avoid these
channels. In a nutshell, the idea is to only pass secret data to
safe instructions, i.e., those whose execution creates operand-
independent hardware resource usage.

Yet, current CT programming practices have significant secu-
rity and performance issues. CT code is written and compiled
once, but may execute on multiple different microarchitectures.
Yet, what instructions are safe vs. unsafe is fundamentally a
microarchitecture-specific issue. A new microarchitectural opti-
mization (or vulnerability) may change the set of safe instructions
and break CT guarantees.

In this work, we develop SYNTHCT to address the above issues.
Given a specification of safe/unsafe instructions, SYNTHCT au-
tomatically synthesizes translations for all unsafe instructions in
the ISA using only instructions from the safe set. The synthesized
translations can be used as a part of a late-stage compiler pass to
generate hardened binaries for a specific microarchitecture. This
closes the security hole as the specification, and hence the safe
translations, can target each microarchitecture individually. This
also allows CT code to reclaim some performance, e.g., use more
complex/higher-performing instructions, when they are deemed
safe for a specific microarchitecture.

Using the techniques we develop in SYNTHCT, we are able to
synthesize translations for a majority of the x86 64 ISA. Specif-
ically, SYNTHCT is able to generate safe translations for 75% of
the ISA using only the remaining 25% of the ISA. Interestingly,
the majority of the instructions that SYNTHCT was unable to
generate translations for are instructions that experts believe are
safe instructions on today’s x86 64 microarchitectures.

I. INTRODUCTION

Microarchitectural side-channel attacks are a major privacy
threat. By observing hardware resource utilization from myriad
sources—virtual memory accesses [1], [2], hardware memory
accesses [3], [4], branch predictor usage [5], [6], arithmetic
pipeline usage [7], [8], [9], speculative execution [10], [11]
and more [12]—an attacker can learn substantial amounts of
information about a victim program, such as its memory access
pattern, control flow behavior, arithmetic operation operands,
etc. Given the large number of hardware resources that leak
different types of information, it is imperative to develop
comprehensive software defenses.

Such comprehensive software-only protection against mi-
croarchitectural side channels is achieved through constant-
time programming [13], [14], [15], [16], [17], [18], [19],

[20], [21], [22], [23], [24], [7], [25], [26], [27]. In this
paradigm, security critical applications are carefully written
and compiled to prevent private information from conditionally
influencing hardware resource usage. In a nutshell, constant-
time programming ensures: (i) that the program does not have
private data-dependent branches, and (ii) that the program
does not have unsafe instructions with private data-dependent
operands. Here, an instruction is unsafe if its execution, e.g.,
timing/hardware resource usage, depends on its operands.
Otherwise, the instruction is safe.

However, the current constant-time development method-
ology has a significant security and performance problem.
The fundamental issue is that, much like other software,
constant-time code is written and compiled once, and reused
for a long time across many different microarchitectures.
Yet, what instructions are safe vs. unsafe is fundamentally
microarchitecture-specific. If an instruction presumed to be
safe at compile time is not safe on some current/future
microarchitecture, we get a potential security vulnerability.
This is especially worrisome now, as Moore’s law’s slowing in-
centivizes microarchitects to adopt more exotic optimizations
to get performance, rendering potentially many instructions
unsafe [28]. On the flip side, if an instruction presumed to
be unsafe at compile time is safe on some current/future mi-
croarchitecture, we incur unnecessary performance overhead
as being able to utilize more instructions tends to reduce
overhead.

Prior work on constant-time programming is complemen-
tary and has not addressed this issue. Such work either
(i) generates mostly constant-time code from a higher-level
language, e.g., a compiler-based DSL such as FaCT [29],
(ii) or hand-writes constant-time code for specific critical
operations [7]. (By mostly constant-time, we mean a program
that treats control-flow and memory instructions as unsafe.)
Both of the above assume that which instructions are safe
does not change across microarchitectures.

In this work, we develop SYNTHCT to address the above
security and performance issues. SYNTHCT enables microar-
chitects to specify what instructions are safe on a per-
microarchitecture basis, called the safe set, and uses program
synthesis techniques to automatically generate translations for
every unsafe instruction in a target program to instructions
in the safe set. Specifically, SYNTHCT takes as input: (i) a
mostly constant-time target program in binary form, (ii) the
formal instruction semantics for the target program’s ISA,
and (iii) a safe-set specification for the microarchitecture the
target program is to be run on, and automatically replaces any
unsafe instructions in the target program with semantically
equivalent translations made up of safe instructions. SYNTHCT

Network and Distributed Systems Security (NDSS) Symposium 2022
27 February - 3 March 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24215
www.ndss-symposium.org

can also improve performance by choosing the best possible
set of safe instructions for a given microarchitecure while
avoiding applying translations for safe instructions in the target
program.

Importantly, SYNTHCT relies on each microarchitecture
publishing which instructions are safe vs. unsafe. While this is
not common today, there has been both industry [30] and aca-
demic [31], [32] traction in publishing similar specifications,
suggesting they may become common practice in the future.

SYNTHCT builds on state-of-the-art program synthesis tech-
niques and formulates the problem of synthesizing unsafe
instructions as a Counter-Example Guided Inductive Synthesis
(CEGIS) problem. Yet, scaling CEGIS techniques to modern
ISAs such as x86 64, as needed by SYNTHCT, is non-trivial
due to the extremely large synthesis search space.

In SYNTHCT, we design and implement multiple techniques
to restrict the synthesis search space and scale CEGIS to mod-
ern ISAs. Specifically, the search space grows primarily as a
function of two factors: (i) the number of available instructions
in the ISA (e.g., 451 non-floating point/vector instructions, or
over 1000 instruction variants total, in x86 64) and (ii) the
maximum length of allowed synthesized programs. To address
(i), we develop component selection, a procedure that prunes
the ISA down to a manageable subset of instructions which
are most likely to result in successful translations for synthesis.
The component selection strategy makes use of a key obser-
vation: instructions that are semantically similar, and hence,
more useful in synthesis, also share a high degree of structural
similarity in the instruction’s AST. To address (ii), we develop
instruction factorization, a divide-and-conquer procedure that
partitions a complex instruction into smaller pieces, each of
which results in a disproportionately smaller synthesis search
space. On top of these, we implement multiple optimizations
to memoize work and guide synthesis towards more likely
solutions earlier—in all cases guaranteeing that translations
are semantically equivalent to the input instructions.

Putting it all together, SYNTHCT synthesizes translations for
75% of x86 64 ISA, i.e., is able to translate a large part of the
ISA in terms of a small set of core instructions. Interestingly,
the instructions that we do not have translations for are
extremely simple and happen to match what experts today
believe are safe instructions on microarchitectures running
x86 64.

In summary, this paper makes the following contributions:
1) We develop SYNTHCT, the first framework to automat-

ically generate translations from unsafe → safe instruc-
tions in an ISA.

2) We develop techniques to overcome several challenges
in framing synthesis of unsafe instructions as a CEGIS
problem. In specific, we develop techniques to re-
duce the synthesis search space and make the problem
tractable on commercial ISAs.

3) We systematically evaluate synthesized solutions from
SYNTHCT for both performance and security. In our
evaluation, we find that SYNTHCT is able to generate
safe translations for a majority (75%) of the ISA using
only a small set of core instructions (the remaining
25%). In case studies, we show how SYNTHCT is capa-

ble of synthesizing safe translations for complex unsafe
instructions, e.g., the divide instruction (DIVL-R32).

We believe SYNTHCT advances the state-of-the-art in
constant-time programming. SYNTHCT is a robust, modular
framework which is capable of being re-targeted to other
microarchitectures and ISAs with minimal engineering effort.
We have open-sourced SYNTHCT as two repositories:
• SYNTHCT: https://github.com/FPSG-UIUC/
synthCT

• Synthesized translations: https://github.com/
FPSG-UIUC/synthCT-artifacts

II. THREAT MODEL AND SCOPE

We consider a standard threat model for constant-time
programming, where a victim program runs on a shared
machine in the presence of adversarial software. The adver-
sary’s goal is to learn private data in the victim program
through microarchitectural side channels. (This is equivalent
to the SGX adversary [33], [31], [19], [16], modulo a caveat
stated below in “Non-goals”.) The program itself is considered
public. We trust that, for a given microarchitecture, every
instruction marked safe in the safe set specification executes
with operand-independent hardware resource usage.

1) Security/Functionality goal: Given a mostly constant-
time program P that takes input y and safe set S (a subset of
the ISA), our goal is to automatically construct a program P ′

with the following properties:
1) Functionality: We require that P (y) = P ′(y) ∀y.
2) Security: We require that for each instruction I ∈ P ′,

we have I ∈ S.1

By definition of our threat model, satisfying Property 1
implies non-interference with respect to the program in-
put and the microarchitectural side channel attacker, on
a non-speculative microarchitecture. That is, it implies
∀y, y′ View(P ′, y; uArchS) = View(P ′, y′; uArchS) where
View(.) returns the program’s hardware resource usage trace in
space and time when run on non-speculative microarchitecture
uArchS with safe set S.

2) Complementary: Spectre mitigations for constant-time
programming: Speculative execution attacks (e.g., Spec-
tre [11]) use a program’s transient execution to form ac-
cessors and transmitters that access and transmit (leak) a
secret [34]. Analyzing what accessors can be constructed
for a given program and microarchitecture, i.e., analyzing
transient reachability, is out of our scope and is covered
in complementary work [35], [36], [37]. Analyzing what
transmitters are possible for a given microarchitecture is in
scope: ‘transmitter’ is a synonym for ‘unsafe instruction.’ In
other words, SYNTHCT enables complementary works [26],
[27] to produce microarchitecture-specific Spectre hardened
code, taking into account that machine’s safe set.

1Requiring that all instructions are safe is overly strong. More precisely,
constant-time programming requires that unsafe instruction operands are not
a function of private data. Accommodating programs in this relaxed definition
would require a complementary, well-understood analysis that can easily be
applied on top of SYNTHCT.

2

https://github.com/FPSG-UIUC/synthCT
https://github.com/FPSG-UIUC/synthCT
https://github.com/FPSG-UIUC/synthCT-artifacts
https://github.com/FPSG-UIUC/synthCT-artifacts

3) Non-goals/limitations: Physical side channels (e.g.,
power [38] or EM [39]) are out of scope. Similar to other
constant-time defenses, we treat SGX-based attacks that mon-
itor analog information, e.g., the RAPL interface [40], as out
of scope.

We also do not prevent secrets from leaking through a
program’s control flow and memory access pattern. That is,
we do not block leakage through cache/memory- and control
flow-related side channels [5], [3], [4]. We assume the input
program is already hardened against these attacks, i.e., is
mostly constant time. We elaborate on how microarchitecture
can still undermine the security of mostly constant-time code
in Section III. Writing and generating mostly constant-time
code is a complementary concern, and has become practical
due to a large body of prior work [13], [14], [15], [16], [17],
[41], [18], [19], [20], [21], [22], [23], [24], [7], [25], [29],
[42].

III. WHAT INSTRUCTIONS MAY BE UNSAFE?
Before describing SYNTHCT, it is important to understand

why instructions become unsafe, and which instructions are
likely to flip between safe and unsafe, depending on the mi-
croarchitecture. To start, mostly constant-time code (Section I)
assumes that control-flow and memory instructions are unsafe.
Due to their significant influence on program execution, it
is ‘safe’ to assume that control-flow instructions are always
unsafe. Likewise, due to myriad memory-system optimizations
such as caches, which enable cache-based side channels [3],
[4], it is safe to assume that memory instructions (loads, stores)
are also unsafe on performance-competitive processors.

This paper’s focus is therefore non control-flow and non
memory operations. Prior work has studied how a small
number of “complex” arithmetic instructions, such as floating
point [7], divide [25] and multiply [8] are unsafe (“variable
time”) on certain microarchitectures. Given tools today, the
only fix is to assume they are unsafe on all microarchitectures.
This is secure, but overly conservative. SYNTHCT can improve
performance when code is run on microarchitectures where
such instructions are safe.

Worse, there is a large family of ISA-invisible microarchi-
tectural optimizations that may render a significantly larger set
of arithmetic instructions unsafe [28]. For example:
• Computation simplification / elimination optimizations

(e.g., [43], [44], [45]) have been proposed for many arithmetic
operations to take advantage of operation-specific identity and
absorption properties. For example, that x & 1 = x.
• Computation reuse optimizations (e.g., [46], [47], [48])

memoize computation when the same instruction(s) are exe-
cuted twice with the same operands.
• Value prediction (e.g., [49], [50], [51]) saves cycles when

an instruction returns a predictable result.
• Significance compression (e.g., [52], [53], [54]), related

to serial computation, impacts performance depending on the
position of the high-order on bit in each program word.

These optimizations are a major security concern. They can
be implemented on any microarchitecture at any time.2 Fur-

2Some indeed have been already. For example, [8] is an implementation of
significance compression.

ther, they are often implemented on a per-instruction basis as
they often require instruction-specific logic (e.g., the identity
rule for AND is different than that of OR). This makes it
unlikely that which are safe will be consistent across microar-
chitectures. SYNTHCT can improve security when code is run
on microarchitectures where such instructions are unsafe.

IV. DESIGN OVERVIEW

In this section, we present an overview of SYNTHCT.
Figure 1 shows an overview of SYNTHCT’s workflow. At a
high-level, SYNTHCT takes as input an ISA specfication and
microarchitectural safe-set specification and generates a library
of safe translations that implement every instruction in the
ISA using only the instructions that are safe on that specific
microarchitecture. The generated library may then be used to
secure mostly constant-time code (or binaries) using a late-
stage compiler pass (or a binary-rewriting mechanism). The
final output is a binary that is constant time (with respect to
that microarchitecture). Therefore, SYNTHCT operates in three
distinct phases: an offline synthesis phase, a microarchitecture
targeting phase, and an online deployment phase. Now we
discuss each step and artifacts in the workflow in more detail.

1) ISA Semantics: SYNTHCT takes as input the seman-
tics for each instruction in the target ISA. The semantics
describe the precise functional operation of each instruction
in some intermediate representation. In our current implemen-
tation, SYNTHCT takes x86 64 semantics written in the K-
framework [55], but the framework is conceptually agnostic
to which ISA and semantics IR. The semantics for each
instruction describes how the output registers and the flag
states are computed. The semantics can be reduced to an
abstract syntax tree (AST) representation that uses the K-
language (/opcodes). Therefore, there is one AST per output
register and flag that the instruction sets. An example of such
an AST is shown in Figure 3 for the instruction “Add with
Carry” (ADCQ) and the output register. Similar ASTs describe
how each of the other x86 64 flags are computed by the
instruction. Note that the semantics may not describe how the
instructions are implemented in hardware nor do they indicate
what instructions may be safe. These are simply functional
specifications.

2) Safe/Unsafe Specification: SYNTHCT also takes as input
a microarchitecture-specific input that specifies the set of safe
and unsafe instructions for that particular microarchitecture.
Safe sets may be provided by the hardware manufacturer, or
reverse engineered like unofficial currently-used safe sets [7].
We hope, long term, that this and related work [32] en-
courages processor manufacturers to publish formal, explicit
microarchitecture-specific safe sets.

A. Step 1 (Offline): Synthesis

The synthesis takes as input the semantics for all instruc-
tions in the ISA and generates a library of translations. In
the first stage, SYNTHCT does not assume a specific safe
set and instead tries to find translations from any instruction
into any other instruction(s). Therefore, the synthesized set
of translations is microarchitecture agnostic. Alternatively, if
the target microarchitecture and its safe set are known at

3

µarch safe
specification

ISA
specification Synthesis

Safe set
Mapping

µarch specific
safe translations

Synthesized
translations

Mostly-CT
Code

CT Binary

Step 3:
Deployment

Step 1: Synthesis

Step 2: µarch Targeting

Fig. 1: Overview of SYNTHCT. SYNTHCT takes as input the specification of instructions in an ISA and uses program synthesis to generate
a library of translations. When targeting a particular microarchitecture, SYNTHCT uses a safe set specification for the microarchitecture to
generate a library of safe translations for all unsafe instructions. The set of safe translations can then be used at deployment time to secure
mostly CT source code or binaries through a compiler or binary rewriting pass. Parts of the main workflow are shown with filled lines and
a possible alternate workflow is indicated with dashed lines.

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

j k l

Fig. 2: Iterative Synthesis. SYNTHCT performs synthesis iteratively
and updates the synthesis graph with generated translations. 1© shows
the initial synthesis graph with instructions A, B, C, D having no
translations. In 2© and 3© SYNTHCT synthesizes translations for A
and B and updates the graph.

synthesis time, they may be used in the synthesis step to
generate microarchitecture-specific translations. We discuss
this alternate work flow at the end of this section.

1) Iterative Synthesis: The synthesis process discussed
above is iterative. SYNTHCT constructs a graph using all
discovered translations. Such a synthesis graph is shown
in Figure 2. In Figure 2, SYNTHCT starts of with a graph
containing a node for every instruction in the ISA and no
edges (1©). As SYNTHCT synthesizes solutions, e.g., in 2©
instruction A is synthesized using instructions B and D, edges
are added to the graph. Finally, as shown in 3©, SYNTHCT
synthesizes a solution for instruction B using instruction C,
and therefore, instruction A may also be translated using
instruction C and D. This allows SYNTHCT to discover
translations that may otherwise not be synthesizable in a single
step due to the complexity of the solution.

B. Step 2 (Offline): Safe-set Mapping
SYNTHCT then uses the microarchitecture-agnostic set of

translations and the safe-set specification for a given mi-
croarchitecture and generates the set of translations specific
to that microarchitecture, i.e., every unsafe instruction in the

extractMInt

addMInt

#ifMInt

eqMInt

CF bv 1 1

addMInt

concatenateMInt

R0bv 0 1

bv 1 65

concatenateMInt

R1bv 0 1

concatenateMInt

R0

bv 0 1

1 .. 65

R0

negMInt

R0

negMInt

adcq

adcq

sbbq

sbbq

Fig. 3: Semantics AST for the adcq instruction’s output register
(black and blue nodes in the AST), written in K [55]. The figure also
shows the structural similarity between ADCQ and SBBQ: to derive
SBBQ from ADCQ, one replaces the blue nodes with the red nodes.

ISA has translations using only the instructions from the safe
set. This step ensures that every instruction is expressed with
the best possible set of safe instructions, according to some
performance model. For safe instructions this is trivial as
they need not be translated. For unsafe instructions it boils
down to using the best performing synthesized solution that
uses only safe instructions. SYNTHCT uses program length
as a proxy for performance, but a lower-level, more accurate
and microarchitecture-specific performance model may also
be used for selecting the best synthesized solutions. The
end result from this step is a library of translations that is
specialized to harden software for a specific microarchitecture.

4

C. Step 3 (Online/Compile time): Software Hardening / De-
ployment

During deployment, the library of translations generated by
SYNTHCT is used to secure mostly constant-time code.3 We
envision this step to be integrated as a late-stage compiler
pass in popular compilers, e.g., GCC or LLVM, to replace any
unsafe instructions selected by the compiler backend by their
safe translations. Optionally, this may also be implemented
as a post-compilation pass using binary rewriting to secure
mostly constant-time binaries, e.g., binaries produced by DSLs
like FaCT or handwritten to be constant time [7], [29], [13],
[14].

The key component of SYNTHCT is Step 1, Synthesis.
In the sections that follow we will first frame the synthesis
problem as a CEGIS problem, then, highlight several chal-
lenges in applying the CEGIS formulation directly, and finally,
present techniques that SYNTHCT implements to solve these
challenges. The deployment step can be implemented with
minimal additional engineering effort, e.g., writing a compiler
pass that uses synthesized translations stored in a machine-
readable format.

D. Alternate Workflow

If the safe set specification and the target microarchitecture
is known at synthesis time, SYNTHCT can take such a speci-
fication as input in step 1, shown by a dashed line in Figure 1,
and directly synthesize safe translations that are specific to the
microarchitecture.

In the following section, we highlight several challenges
facing both workflows. To summarize these challenges: On
the one hand, if the size of the safe set is large, then both
workflows face similar scalability issues. On the other hand,
if the size of the safe set is small and simple, then the more
complex instructions in the ISA may not be synthesizable in
one-shot.

V. SYNTHCT: FORMULATION AND CHALLENGES

This section describes the design and implementation of
SYNTHCT. First, we formulate the problem of instruction
synthesis as a Counter Example Guided Inductive Synthesis
(CEGIS) problem in §V-A. Then, we show several challenges
that we need to solve to make synthesis tractable for an an ISA
like x86 64 in §V-B. Finally, in the sections that follow, we
discuss several techniques we develop in SYNTHCT to tackle
these challenges.

A. Formulation as a CEGIS Problem

1) CEGIS Sketch: We formulate the problem of instruction
synthesis to an off-the-shelf CEGIS tool by specifying: (i) a
specification of the synthesis goal and (ii) the sketch used to
generate candidate programs. In our setting, the specification
is the semantics of the target instruction, It, in bitvector logic.
Candidate programs that implement the target instruction
are generated from the sketch shown below. Our sketch is
simple and general: A program is expressed as a list of x86

3That is, code whose control flow and access pattern to data memory is
independent of private data, but may pass private data to unsafe instructions.

instructions, and each instruction is parameterized by zero or
more register operands (as needed by the instruction).
Program (P): (list Inst*)
Inst (I): (choose* {??})
{??}: x86 Instruction { ??: register operands }

The {??} are holes that need to be filled in by synthesis
to generate concrete programs. Here, the first such hole can
be filled in by choosing an appropriate component4, i.e.,
an instruction, from a set of available components, i.e., all
instructions or a subset of instructions from the ISA. The
second hole can then be filled in by choosing register operands
for the selected instruction from the pool of available registers.
Based on this sketch, the CEGIS procedure has three degrees
of freedom in generating concrete programs: (i) The length
of program to synthesize, (ii) The choice of instructions
(components) for each “line” in the program, and (iii) The
register operands to each instruction.

2) Verifier: The verifier checks if the synthesized program
and the specification are semantically equivalent. To do so, the
verifier interprets the specification and the candidate program
starting from blank (symbolic) states S and S′ respectively.
Then, it performs an equivalence check over the corresponding
register and flags states in S and S′. If the final states
are equivalent, then the candidate program implements the
specification and we have a synthesis solution. Otherwise,
the verifier produces a counterexample that is used to refine
the future solutions. In our setting, the verifier uses the SMT
solver, Z3 [56], to perform equivalence checks and generate
counterexamples.

3) CEGIS Implementation: For synthesis, SYNTHCT uses
Rosette [57] a solver-aided DSL that extends Racket to make
it easy to develop various tools, e.g., a symbolic interpreter,
synthesis engine etc.

In theory, above formulation is sufficient to synthesize
programs for all instructions It in an ISA in terms of a safe
set of instructions. However, in practice, this formulation of
synthesis does not scale to an ISA as large and complex as
x86 64 due to the large synthesis search space, as we see
below.

B. Challenges

To test the scalability limits of our synthesis problem formu-
lation, we perform several synthesis experiments by varying
the parameters: (i) The length of synthesized programs, (ii)
Number of available instructions for synthesis, and (iii) Num-
ber of registers available for synthesis. For this experiment,
we consider the synthesis of the “Add with Carry” (ADCQ)
shown previously in Figure 3, with six registers available to
use in synthesis. Figure 4 shows the log of synthesis running
time vs. synthesis program lengths for different component set
sizes.5 The timeout is set to one day for this experiment. The

4‘Component’ is a synthesis term. In this paper a component is an
instruction opcode.

5Setting the program length to N instructions or components forces syn-
thesis to find only solutions with that number of instructions. If there exists
a solution with fewer than N instructions, say S, synthesis will still need to
“find” a solution S’ (in a larger search space) that is, e.g., S padded with
nops (either literal nops or sequences that are semantically nops) to reach N
total instructions.

5

1 2 3 4 5 8 16
Program Length

100

101

102

103

104

105
Lo

g
Ti

m
e

(in
 s)

Components
4
8
16
32
64
128
256
Failure
Success

Fig. 4: Synthesis Scalability. The graph shows synthesis time, for the
running example ADCQ, vs. program length for different numbers of
components. Component sets for synthesis are expert selected such
that at least one known solution exists. Points with l denotes a
success and 5 denote failure, i.e., unsat/timeout. Timeout is set to
one day for this experiment.

set of available components are expert chosen to ensure that
at least one possible solution exists for ADCQ. Points in the
parameter space that lead to successful synthesis solutions are
marked by a l while ones that fail, either due to unsat (no
possible solution) or a timeout, are marked by an 5.

From the graph, we see that synthesis time is a function
of both synthesis program length and the number of available
instructions to use in synthesis. The synthesis time increases
exponentially with the increase in both the program length and
the number of available instructions. We see that setting the
program length to 3 gives us the first successful synthesis and
increasing the program length results in exponential increases
in the time to success — only the curve with a small number
of available components (4) succeeds for program length 8
and all available instruction set sizes fail due to timeout after
one day for programs of length 16. We see a similar trend
when exploring different-sized sets of available components
— increasing the set size exponentially increases the time
taken for success while keeping program length constant, with
larger set sizes, e.g., 128, having successes only for very
short program lengths (3) and the largest set (# of available
components = 256) having no successes.

This experiment makes it clear that both parameters have
a ‘goldilocks zone’ in which synthesis succeeds and takes a
reasonable amount of time. On the one hand, we require that
the program length, # of available components and # available
registers is small. On the other hand, if we do not sufficiently
provision each of these, synthesis cannot find a solution.

1) Setting the program length: For example, if we make
the program length too short, e.g., points in the graph where
program length is 1 or 2, then the synthesis fails as there may
be no programs of such short lengths that can implement the
target instruction. Making matters worse, given an arbitrary
target instruction to synthesize, it is not possible to say ahead
of time if such a short solution exists. In fact, in x86 64,
we see several such instructions, e.g., Leading Zero Count

(LZCNTQ), that are complex and cannot be synthesized with
programs of short length. Thus, we need to solve two problems
related to setting program length: a) how to choose the right
program length for a given target instruction and b) how to
scale synthesis to handle complex instructions that require
intractably large program lengths.

2) Setting the component set: When looking at the number
of components to make available for synthesis, we face a
similar issue. Smaller sets of available components lead to
quicker synthesis successes. As shown from our experiments,
providing the entire ISA to synthesis as choices is infeasible.
For example, the synthesis time given a candidate component
set size of 256 (256 out of 451 instructions) for programs with
lengths > 2 is more than a day. Therefore, the naive solution
of using all instructions in the ISA in synthesis is infeasible
and we need to develop a way to automatically (without expert
guidance) select a good subset.

A strawman idea to address this “component selection”
problem is to randomly sub-sample the ISA. The smaller
the size of the subset, the lower the probability of picking
a ‘good’ set of components, that contains the components
needed for a solution, while a larger subset will exponentially
increase the synthesis time. To check whether this simple
strategy is sufficient, consider the probability of choosing a
good subset of size 32 (as 32 was the largest component
size yielding successes in Figure 4). Then there are

(
451
32

)
possible subsets out of which only

(
448
29

)
have the required

three components for the solution. Therefore, the probability
of picking a good subset is ≈ 0.000326 which is extremely
low. Choosing subsets with fewer instructions yields similar
results. Therefore, to keep the synthesis time tractable while
generating synthesis successes, we need a better way to
automatically select component subsets for synthesis based on
the target instruction.

3) Setting the number of available registers: In the above
experiments, we keep the number of available registers a con-
stant (6). We observe similar scaling trends when varying the
number of registers. Due to limitations in the current sketch,
synthesized programs cannot spill and restore registers to/from
memory. Therefore, having too few registers means that certain
solutions that need more registers cannot be synthesized, while
having too many registers increases synthesis time.

In this paper we will focus on addressing issues with
program length and component sets (see previous two sub-
sub sections). Combined with solutions to these issues, we find
that the naive strategy for registers—limiting the number of
available registers to a smaller number than the actual num-
ber of registers in x86 64 (16 general purpose registers)—
is sufficient. There may be room to develop heuristics to
automatically pick the required number of registers based on
the complexity of target instruction or to iteratively increase
the number of registers when synthesis fails to produce a
solution. We leave developing such heuristics for future work.

VI. SYNTHCT DESIGN

From the above experiments, we must address several
challenges.

6

First, we must coordinate the program length with the
number of components we actually expect will be required.
This is especially when the program length is large, e.g., as
we have described with the LZCNTQ example, as synthesizing
programs of this length is intractable. Second, regardless of the
program length, we need to devise a way to sample the ISA so
as to include components that are likely to lead to successful
synthesis. We now give a high-level overview of how we solve
these challenges:

1) Component selection: As the naive random sampling is
unlikely to generate many synthesis successes, we develop a
better strategy to pick a good set of components to maximize
the likelihood of synthesis success. The key insight behind
our component subset selection is that structural similarity
between instruction ASTs can be an indicator for semantic
similarity. We build on this insight to develop our component
selection strategy in §VI-A.

2) Instruction factorization: As the program length needs
to be short, certain complicated instructions in x86, e.g.,
Leading Zero Count (LZCNTQ), cannot be synthesized because
no loop-free program of short length can implement such in-
structions. To solve this, we develop instruction factorization,
a divide-and-conquer strategy to synthesize solutions in parts,
in §VI-B. Sometimes, factorization is insufficient to implement
certain complicated instructions, e.g., the Divide instruction.
To synthesize such instructions we introduce several additional
techniques: node splitting and pseudo-instructions (§VI-C).

3) Register handling: To reduce the synthesis search space,
we restrict the number of registers to just 6 registers, compared
to 16 available general purpose registers in x86 64. We
found that combined with the solutions discussed above, this
simple strategy of restricting the number of registers was
sufficient for synthesis. In the future, we may explore more
sophisticated strategies to tailor the number of registers based
on the synthesis need.

4) Miscellaneous issues: Lastly, we discuss other miscella-
neous challenges and solutions in synthesizing x86 instructions
in §VI-D.

A. Component Selection

To make the synthesis problem tractable we need to re-
strict the synthesis search space by allowing synthesis to
only choose components from a small subset of instructions
rather than the entire ISA. From our experiments, it is clear
that choosing components at random is unlikely to select a
good subset of components for synthesis. In this section, we
design the component selector, that for a given instruction
to synthesize, picks a set of components that maximizes the
likelihood of a synthesis success.

Key Insight. The key insight behind our component selection
is that instructions that are semantically similar, and hence
more useful for synthesis, have structurally similar semantics.
In other words, their ASTs are structurally similar to each
other. For example, in the ADCQ example from Figure 3, one
can form the AST for the “Subtract with Borrow” (SBBQ)
instruction by replacing the blue nodes in the AST with red
nodes. This makes sense as a subtract is addition with a

negation. If we give SYNTHCT a set of components that
includes sbbq, it does synthesize the desired solution:
adcq R0, R1:
movq 0x0, R3
sbbq-r64-r64 R0, R3
subq-r64-r64 R3, R1

To restate the component selection problem: given an in-
struction It to synthesize, return a list of instructions, or
components, from the ISA ranked according to their similarity
to the synthesis target It. Generally, we find that sub-graphs
of the target instruction’s AST are sub-graphs of a candidate
component’s AST. For example, the ADCQ↔SBBQ example
from Figure 3. Therefore, we need a fuzzy way to estimate
similarity between instructions and assign a score based on
how similar the instructions are. Performing subgraph match-
ing on all instruction ASTs is too expensive; we therefore need
a lightweight way to estimate the degree of similarity between
ASTs.

1) Implementation: SYNTHCT implements the fuzzy simi-
larity estimation in two steps:

1) Graph Embedding: to convert variable-sized graphs, i.e.,
instruction semantics expressed as an AST, to a fixed-
size vector representation,

2) Similarity Estimation: that uses vector representation of
ASTs to assign similarity scores.

For graph embedding, we use graph2vec [58],
an unsupervised machine learning technique similar to
word2vec [59] used in NLP settings. graph2vec captures
structural similarity between graphs and generates similar
embeddings for graphs that are structurally similar to each
other. Our implementation uses graph2vec as implemented
in the python library karateclub [60]. graph2vec takes a
number of hyper-parameters for training, we refer the readers
to [58] for full details. Empirically, we found the following
learning parameters to be sufficient to find good results for
synthesis (§VII-E1): We set the number of WL iterations
to 3, the number of training epochs to 30, and the size of
the output vectors to 128. We did not try to optimize these
hyper-parameters further or do an exhaustive search. We
leave optimizing these hyper-parameters as future work.

The output from the graph embedding stage is a fixed-length
vector representation of the semantics of each instruction.
Then, to find instructions that are most similar to the query
instruction we use K-Nearest Neighbors (KNN) search. We use
Euclidean distance for the distance metric and set the number
of neighbors to 32 (K = 32) to get the 32 instructions most
similar to the query instruction (as 32 was the largest size that
yielded successes in reasonable time; c.f. §V-B).

B. Instruction Factorization

In order to keep synthesis times tractable, we are restricted
to synthesizing programs of short lengths (e.g., 4 instructions).
However, there is no guarantee that any instruction from any
ISA will be synthesizable with a program of such short length.
For example, certain instructions in x86 64 such as the lead-
ing zero count (LZCNTQ) instruction have complex semantics
and require hundreds to thousands of simpler instructions to

7

#ifMInt

eqMInt

extractMInt bv 1 1

bv 0 64

R0 63 .. 63

#ifMInt

eqMInt

extractMInt bv 1 1

bv 1 64

R0 62 .. 62

#ifMInt

<Repeated 61 Times … >

Fig. 5: Simplified Semantics for Leading Zero Count Instruction
(LZCNTQ). The figure only shows the first two levels of the AST.
Observe that the structure of if-then-else is repeated multiple
times, but with the conditional comparing different bits and the then
branch returning a different value. The differences in the two levels
are highlighted in red and blue respectively.

synthesize (§VII-B). We therefore need additional techniques
to scale and generalize synthesis.

In Figure 5 we show the simplified semantics of LZCNTQ
to illustrate potential complexity in instruction semantics. The
original, un-simplified AST has 771 different nodes with a
depth of 64. Taking a closer look, the AST has the same
substructure repeated multiple times (as shown in dashed gray
lines). Indeed, this is because the same operation is repeated
on different bits, i.e., bit 0 through 64, of the operand.

To be able to synthesize such complex instructions while
keeping synthesis time tractable, we develop instruction fac-
torization, a divide-and-conquer technique that breaks down a
complex instruction semantics AST to multiple, simpler ASTs.
Each of the smaller ASTs are treated as semantics for simpler
factors. The factors are then synthesized as separate synthesis
tasks, like regular instructions in SYNTHCT. Once the inter-
mediate factors have solutions, the original larger instruction
is synthesized exclusively using these smaller factors.

1) Factorization Strategies: There are multiple ways to
factorize an instruction’s semantics. For a good factorization,
we need to find a minimal-size partition of the semantics
AST, such that each of the sub-ASTs that are generated by
the partition are synthesizable in parts. In general, it is not
possible to say if a particular partition is synthesizable without
investing time into trying to synthesize solutions from it.

In this work, we primarily use a bottom-up factorization
strategy. The intuition is to try the simplest ASTs first, i.e.,
starting from trying to synthesize sub-trees from the target
instruction’s semantic’s leaves with height = 1, and incre-
mentally combine the simpler solutions to synthesize larger
and larger subtrees.

To illustrate this strategy, consider the example in Figure 6
that shows an example AST, the generated factor types,
and the bottom-up factorization workflow graph. In the AST
(Figure 6a), nodes are labelled such that a lowercase label
(letter) indicates a single node in the original AST and an
uppercase label refers to a subtree which may have one or
more nodes. When the same node label appears two or more
times, that means the same node or subtree appears that many
times. We differentiate between occurrences via subscripts.

SYNTHCT synthesizes the AST by partitioning it into sev-
eral types of smaller synthesis tasks (Figure 6b). To synthesize
AST leaves, SYNTHCT creates a synthesis task to translate
just the leaf. As the AST can be recursively viewed as a single
node with subtrees for operands, we create a synthesis task for
each node and set the subtrees as stubs. We then recursively
factorize the subtrees, eventually reaching the leaves, e.g., the
subtree E1 eventually reaches its leaves and their correspond-
ing subtree of tasks are abstracted behind the task Synth–E1.
To synthesize AST non-leaves (e.g., d1), SYNTHCT first tries
to synthesize the root node (e.g., d1) in isolation, leaving the
children as stubs/residuals (denoted Synth–d1r). It then tries
to synthesize the whole rooted AST after both the root node
and children have been resolved (denoted Synth–d1).

Finally, the workflow graph (Figure 6c) shows the order of
in which SYNTHCT schedules the synthesis tasks to synthesize
the overall AST. SYNTHCT starts synthesis of factors from
the leaves of the workflow graph and proceeds to synthesize
the parents when all the subtasks return success. Child tasks
beneath a single parent are attempted left-to-right; hence,
the residual task is synthesized first, followed by tasks for
each child subtree. This way, synthesis works bottom-up,
synthesizing the simplest factors first before synthesizing
larger, more complicated factors, eventually synthesizing the
complete instruction. Additionally, when synthesizing non-leaf
factors, the sub-factors of the target factor are available as
components to use in synthesis.

2) Optimization: Factorization may create a secondary
problem: there may be too many simple, overlapping synthesis
tasks to run in a reasonable amount of time. Consider the
example from earlier (Figure 6) and its corresponding bottom-
up workflow graph (in Figure 6c). In this example, notice
that the subtrees rooted at d1 and d2 are equivalent, and yet,
we have separate synthesis tasks, Synth-d1 and Synth-d2, in
the workflow graph. In fact, we see massive memoization
opportunities in the wild when synthesizing several x86 64
instructions, e.g., the aforementioned Leading Zero Count
(LZCNT) shown in Figure 5, Population Count (POPCNT),
Trailing Zero Count (TZCNT) etc. Indeed, this is because
LZCNTQ (and similarly the other examples) performs the same
repeated operations on bits 1 through 64 of its operands.
To reduce the number of synthesis tasks we exploit this
observation and memoize the synthesis results. When a new
factor needs to be synthesized, SYNTHCT first computes the
hash of the subtree and checks if a solution has already been
computed by another synthesis task.

C. Node Splitting and Designing Pseudo-Instructions

Instruction factorization solves the problem where the AST
is dominated by many vertices, each with relatively simple
functionality. We now tackle the opposite problem: where
the AST is dominated by few vertices, each with complex
functionality, e.g., a divide opcode. These opcodes are not
translated in K internally as they have a one-to-one corre-
spondence with opcodes in SMTLIB, thereby enabling direct
formal reasoning such as equivalence checking.

The fundamental reason we cannot handle complex inter-
mediate vertices is because SYNTHCT has no structural infor-

8

Synth-d1r Synth-E1

Synth-d1

Synth-E2 Synth-F2

Synth-d2Synth-B2

Synth-cSynth-B1

Synth-a

Synth-ar

Synth-F1Synth-cr

Synth-d2r

a

B1 c d1

B2 d2 E1 F1

E2 F2

For leaves, Synth-Xi,
(e.g., Synth-E2):

Xi

Residual, Synth-Xr,
(e.g., Synth-cr):

Non-leaf, Synth-Xi,
(e.g., Synth-d1):

c

stub1 stub2

c

stub1 stub2

d1

E1 F1

d1

E1 F1a. b. c.

Fig. 6: Instruction factorization example. (a) An example instruction AST to be factorized. Lower-case labels are AST primitive operations;
upper-case labels are subtrees of AST operations. Subscripts denote different instances of the same AST subtree. (b) The different types of
synthesis tasks spawned to synthesize the AST. (c) The synthesis workflow graph for (a), depicting the order in which synthesis tasks are
evaluated (bottom to top).

Pseudo-Instruction Description

movq-imm-r64 i, r0 Move an immediate value i into the register r0
pmovq-r64-r64 r0, r1 Move from register r0 to r1

pmov-flag-r64 f, r0 Move value of flag f into register r0
pmov-r64-flag r0, f Move value in r0 into flag f

psplit-r64-r64 r0, r1, r2 Split value in r1 into r0 and r1 at index specified in r2
pconcat-r32-r32 r0, r1, r2 Combine r0 and r1 into r1 by shifting value in r0 by value in r2

pcmov-r64-r64-r64 r0, r1, r2 Conditionally move r1 into r2 depending on if the condition r0 is true

pnot-r64 r0 Logical not
por-r64-r64 r0, r1 Logical or

pand-r64-r64 r0, r1 Logical and
pxor-r64-r64 r0, r1 Logical xor

pnop No-op (NOP)

TABLE I: List of pseudo-instructions implemented in SYNTHCT.

mation in the semantics to exploit during component selection,
i.e., since each individual vertex is complex and abstracts
away multiple operations, picking a good set of components to
implement the functionality of that said vertex is not possible.
Therefore, SYNTHCT needs additional assistance in order to
be able to exploit structural information and synthesize such
complex instructions.

In the following two subsections, we develop two techniques
to handle this source of complexity: (i) expert-written pseudo-
instructions to provide synthesis with some useful primitives
and encourage creative solutions, and (ii) node splitting to
manually represent complex intermediate K-operations as sim-
pler operations.

1) Pseudo-Instructions: The intuition behind pseudo-
instructions is to have some extremely useful expert-chosen
primitives, e.g., generating bitmasks, extract bits i through
j from a register etc., be available in all synthesis tasks.
These expert-chosen primitives are treated as normal unsafe
instructions and are synthesized by SYNTHCT as usual. They
can then be used as subroutines in subsequent synthesis
jobs. Well chosen pseudo-instructions solve three problems:
(i) re-discovering implementations for basic primitives wastes
synthesis cycles, (ii) by abstracting away useful primitives
that need multiple instructions to implement behind a pseudo-
instruction, we effectively compress the program lengths of
synthesis solutions that need these primitives, and (iii) if
chosen correctly, pseudo-instructions will encourage creative
solutions that synthesis may not have found otherwise. Pseudo-
instructions are ISA independent and therefore can be used
in synthesis of instructions in other ISAs as well, although,
their usefulness may vary depending on instructions and
complexities of the ISA.

The current set of pseudo-instructions we designed for SYN-
THCT along with their descriptions are shown in Table I. Just

like regular instructions, pseudo-instructions are synthesized
by SYNTHCT, except that the set of instructions used as
components during the synthesis is a set of simple, fixed
instructions. These need not be in the safe set for a specific
microarchitecture and, if not, will themselves require transla-
tions to the safe set. In other words, the pseudo-instructions
do not go through the component selection process. This is
currently an engineering limitation6 which can be addressed
in future work.

2) Node Splitting: We use node splitting to simplify com-
plicated K intermediate opcodes, e.g., the K divide 64
opcode in the division family of instructions, ROL/ROR in
the rotate family of instructions, and MUL in the multiply
family of instructions. K-opcodes are finite and shared across
ISAs, i.e., instructions from any ISA need to be expressed in
terms of these fundamental K-opcodes to be compatible with
formal reasoning in the K-framework. Thus, node splitting
is a one-time manual implementation effort, per complex K-
opcode, and need not be re-done if SYNTHCT is re-targeted
to a different ISA.

Once such translations are implemented in SYNTHCT,
ASTs of instructions that contain the complex opcodes are
first simplified by replacing the opcode with the translation
before proceeding with the rest of SYNTHCT’s workflow. We
implement such translations in SYNTHCT for the the rotate K-
opcode, rol, and the K-opcodes used in the divide instruction,
div quotient int32 and div remainder int32.
This will be discussed in our evaluation §VII-C. More such
translations may be implemented in SYNTHCT on-demand
with minimal effort.

The overall algorithm uses node splitting with instruction
factorization and component selection as follows. First SYN-
THCT uses node splitting to simplify complex vertices in an
instruction AST using translations built into SYNTHCT. This
process converts an AST with a few complex vertices into an
AST with simpler, but larger number of vertices. Second, we
use instruction factorization to synthesize the now larger AST
through the divide-and-conquer mechanism that we described
earlier. We note that due to program length constraints, node
splitting would likely be ineffective without factorization.

6Pseudo-instructions in SYNTHCT are directly implemented in racket
(/rosette) rather than K and therefore cannot go through the usual flow through
SYNTHCT that other instructions written in K can go through. Therefore, with
the current prototype implementation we cannot perform the usual component
selection described in §VI-A.

9

Pseudo-instructions vs. node splitting. Both pseudo-
instructions and node-splitting help SYNTHCT to synthesize
complex instructions, albeit in slightly different ways. Pseudo-
instructions are intended to be more generic and help syn-
thesize more creative solutions that would otherwise not be
possible, while node-splitting is specific to certain complex
K-opcodes that are opaque and need to be simplified.

D. Other Challenges

Synthesizing x86 64 instructions, in particular, also intro-
duces several additional challenges.

1) Synthesizing Multiple Solutions: The earlier sections
describe how SYNTHCT generates a single solution. But to
develop a rich set of translations so that they may be applicable
to a wide-range of safe sets we ideally need to generate
multiple synthesis solutions for a single instruction, each that
utilizes minimally- or non-overlapping subsets of components.

To achieve this diversity, on a synthesis success, SYNTHCT
generates multiple new synthesis tasks for the same instruction
as a feedback mechanism. Each of the new tasks are generated
by removing one of the instructions used in the synthesized
solution. To do so, SYNTHCT uses the same K-Nearest Neigh-
bor (KNN) heuristic developed in §VI-A to pick the K most
similar instruction to the target instruction and then filters out
the instruction(s) that were used in the synthesized solution.
Therefore, a solution that uses N distinct instructions in the
solution generates N new synthesis tasks as feedback. This
sampling-without-replacement strategy encourages diversity
by not re-using instructions across solutions.

2) Side-effects: Equivalence of Flags: Many x86 instruc-
tions also set ISA flags as side-effects, i.e., RFLAGS, in
addition to the output registers(s). For example, the running
example, the ADCQ, instruction sets the following flags: OF,
SF, ZF, AF, CF, and PF, according to the result. To achieve
complete equivalence to the instruction, not only does the
output register need to be equivalent, but the flag state needs
to be equivalent as well.

We treat synthesis of flags as a separate synthesis task where
the objective is to synthesize these side-effects and ignore the
output register. Once a solution that sets the flags is synthe-
sized, it can be combined with the solution for the output
register(s) to achieve complete equivalence. Glue code saves
register values before the main computation, then, saves the
contents of the output registers after the main computation, and
restores the initial operand values for the flag computations.
Lastly, it restores the saved result from main computation to
the output register using a single MOV with no side-effects.

Of course, it may be more efficient to synthesize the flags
with the output registers in one-shot in a single synthesis task.
Yet, this may prevent synthesis from discovering solutions that
only implement the computations needed to set the output reg-
isters of the target instruction correctly. Such partial solutions
may be sufficient most of the time, as described below.

Including code to set the flags correctly introduces addi-
tional overhead. However, in many cases, the instruction side
effects are ignored, i.e., the flags are never used before being
clobbered again. Therefore, we store both solutions separately:

the main solution that sets the output registers, and the addi-
tional code needed implement side-effects. When translating
instructions in mostly constant-time code, we choose from one
of the two variants depending on if the flags are live at that
program point or not. This allows us to reduce the overhead
and not needlessly emulate the instruction side-effects when
the flags are never used before being clobbered.

3) Exceptions: Some instructions may generate operand
value-dependent exceptions. For example, the divide instruc-
tion (DIVQ), generates an exception when the divisor is 0.
These exceptions are problematic for SYNTHCT, and constant-
time code in general. On the one hand, throwing the exception
breaks constant-time programming. On the other hand, mask-
ing the exception breaks semantic equivalence (which is an
important goal in SYNTHCT). By default, we can adopt well-
established strategies (e.g., [16]) for masking exceptions in
constant-time code, but leave implementing these solutions to
future work.

VII. EVALUATION

1) Framework: SYNTHCT is implemented in python in
about 8000 lines of code. This code is responsible for
parsing semantics, performing AST transformations, factoriza-
tion, generating individual synthesis tasks, and orchestrating
the feedback for the synthesis. Additionally, another 700
lines of code is implemented in racket to set up synthesis,
implement a machine model, implement pseudo-instructions
and interpret the generated K programs. The implementation
uses formal semantics for x86 64 written in K [55]. For
synthesis, SYNTHCT uses Rosette [57] a solver-aided DSL that
extends Racket to make it easy to develop various tools, e.g.,
a symbolic interpreter, synthesis engine etc. Currently, SYN-
THCT only synthesizes instructions with register operands.
To handle memory operands, or instructions with immediate
operands, we can augment the synthesized translations with
an additional mov instruction to load (or store) from memory
or load immediate operands into registers. Alternatively, the
register operands in synthesized translations may be replaced
by a memory expression when the target instruction uses a
memory operand (assuming the instruction behaves identically
when operating on registers v/s memory, albeit performing an
additional load/store to memory).

2) Experimental Setup: All experiments below were per-
formed on a server machine running Ubuntu 18.04 within a
docker container. The two machines used had 80 cores each,
with 128GB/256GB of ram respectively. Synthesis tasks were
run in parallel to use as many cores as possible. Synthesis
runs were performed in batches with our longest run lasting 3
days. Instructions requiring factorization were run separately
in isolation. Over the course of all our experiments, SYNTHCT
generated a total of 2617 synthesis solutions, generating at
least one translation for 242 (/366)7 non-vector, non-floating
point instructions. We did not try synthesizing vector and
floating point instructions. While we cannot show all trans-
lations for space, we show several representatives in Table V

7The remaining instructions (451-366) are all mov + cmov instructions that
we do not run synthesis tasks for.

10

in the appendix. All results that we discuss below consider
full equivalence of translations, i.e., output registers + flags
(§VI-D2).

In the subsections that follow, we evaluate SYNTHCT for:
(i) security, to understand and assess the safe sets resulting
from SYNTHCT’s synthesized translations, (ii) performance,
to quantify the overhead introduced by using SYNTHCT’s safe
translations, (iii) two case-studies to illustrate the use of node-
splitting (§VI-C) and factorization (§VI-B) in synthesis of the
rotate left (ROLL) instruction and the divide (DIVL-R32)
instruction, and (iv) lastly, highlight some secondary metrics
of the synthesis process.

A. Security Evaluation

In this section, we evaluate the security implications of the
generated set of translations. More specifically, we analyze
the potential safe sets that are emergent from SYNTHCT
synthesized translations. Then, we compare these emergent
safe sets with those introduced in the literature.

1) Methodology: Deriving Safe Sets from the Synthesis
Graph: We represent SYNTHCT’s translations as a synthesis
graph (§IV). To recap, the synthesis graph (shown in Figure 2)
has a node for every instruction (and by extension, pseudo-
instructions and factors encountered in the synthesis process).
For a solution synthesized for a target instruction, It, the graph
records the instructions used by the solution by adding an
edge from instruction It to all the instructions used in the
solution. We store additional metadata for each edge, e.g., a
unique solution, the line number in the synthesized program,
and concrete values of operands to use. We iteratively build
up the synthesis graph as SYNTHCT synthesizes translations
for all instructions in the ISA.

Once we build a synthesis graph corresponding to a set
of translations, the next step is to identify the emergent safe
sets. Specifically: we define SYNTHCT’s safe set as those
instructions that have no translations, i.e., outgoing edges
in the synthesis graph (conversely, instructions that have at
least one outgoing edge may not be needed in the safe set).
By definition, these instructions cannot be rewritten in terms
of any other instruction. Thus, any microarchitecture using
SYNTHCT will require that its microarchitectural safe set be
a superset of the SYNTHCT safe set (more details are given
in §VII-A3).

Deriving the safe sets from the synthesis graph is non-trivial
because the synthesis graph may contain cycles. For example,
consider synthesis of instructions A and B where solution to
A may use instruction B and vice-versa, thereby creating a
cycle in the synthesis graph. In this case, neither A nor B
are leaves, but at least one of them needs to be included to
form the safe set. In other words, the safe set is not unique.
Therefore, the first step is to reduce the synthesis graph to
a directed acyclic graph (DAG) by eliminating such cycles
in the graph. To do so, we first identify the cycles in the
graph by using Tarjan’s algorithm [61] to identify the strongly
connected components (SCC) in the graph. Next, we replace
the nodes in the cycle with a single node. The new node is
labeled using a disjunction of node labels (instructions) that
form the cycle. We then redirect any incoming edge to the

cycle, i.e., an edge from a node not in the cycle to a node that
is a part of the cycle, to the new node. Similarly, any outgoing
edge from the cycle is redirected from the new node. We apply
this procedure multiple times until all cycles in the synthesis
graph are eliminated. The leaves of the newly generated DAG
representation of the synthesis graph gives us the list of
potential safe sets: every leaf represents a single instruction,
or a choice between several instructions (represented by the
disjunction as a result of replacing cycles in the graph).

2) SYNTHCT safe set: Using the methodology described
in the above subsection, we derive safe sets for SYNTHCT
synthesized translations. Specifically: Table III represents the
core safe set that must be included in all SYNTHCT safe
sets. Table II shows additional safe set instructions involved in
synthesis graph cycles (§VII-A1). By combining the instruc-
tions in Table III with one instruction per group in Table II,
we can form one of many final safe sets. The core safe set
contains 53 instructions and we need to select 1 instruction
from each of the 37 groups of instructions to form a complete
safe set, resulting in a total of 90 instructions in a safe set.
Therefore, using only 90 / 366 (25%) of the instructions we
can implement the remaining 276 (75%) instructions in the
ISA.

3) Comparing to a microarchitecture safe set: The next
question we want to answer is: what are the implications
of these generated safe sets and how do they compare to a
microarchitecture specific safe-set specification? Recall that
in the second phase of SYNTHCT, we use a microarchitecture
specific safe-set specification to generate safe translations of
all instructions in the ISA. The goal is to find translations for
every instruction in the ISA to instructions in the uarch safe
set. Therefore, when given such a safe-set specification, we
can have two different scenarios:

Case 1: Microarchitecture safe-set specification and SYN-
THCT safe sets are compatible. In this case, at least one
of the SYNTHCT-generated safe sets is a subset of the mi-
croarchitecture safe set. Since, by definition, all instructions in
the ISA can be translated using only the instructions in SYN-
THCT’s safe set and the microarchitecture safe set is a superset
of SYNTHCT’s safe set, every instruction in the ISA can be
translated using only the instructions in the microarchitecture
safe set. Having more instructions in the microarchitecture safe
set simply means more choices of instructions that may be
used in the safe translations. This is a success case as now
any program compiled for the given ISA can be secured by
using the set of safe translations from SYNTHCT.

Case 2: Microarchitecture safe-set specification and SYN-
THCT safe sets are incompatible. In this case, none of
SYNTHCT’s safe sets are subsets of the microarchitecture
safe set. Since instructions in the SYNTHCT safe set are
leaves in the synthesis graph, this means there is one or more
instruction that cannot be translated to the microarchitectural
safe set (namely, the SYNTHCT safe set instructions that are
not contained in the microarchitectural safe set). This is a
failure case. Not all instructions (and hence programs) in the
ISA can be expressed using the safe set of instructions for
that microarchitecture. Further synthesis tasks and expert assis-

11

ADCB*(2) SUBB*(2) SUBB*(2) ADCQ or SBBQ ADCL or SBBL
ADCW or SBBW ADDB*(4) NOTL or ANDL ROLL or RORL
CMPXCHGB*(4) or XCHGN*(4) or ANDB*(2) or ORB*(2) or XORB*(2) ANDB*(2) SALQ or SHLQ SHLL or SALL or BLSRL BSRL or BSFL
BSRQ or BSRW ORB*(2) XORB*(2) NEGB*(2) INCB*(2)
ROLW or RORW RCRB or RCLB RCLW or SHLW or SALW ROLB*(2) or RORB*(2) ROLL or RORL
SALB*(2) or SHLB*(2) SALL or SHLL SALW or SHLW SARB*(2) SET*(9 sets, 60 total)

TABLE II: Safe set instructions involved in cycles. One instruction from each group needs to be chosen to be included in the final safe set.
‘*’ denotes multiple instruction variants shown in a compressed form. The number of instructions represented/compressed is indicated with
parentheses. For example, the “SALB*(2) or SHLB*(2)” group contains 4 instructions; 1 of which must be included in the final safe set.

Category Opcode B W L Q

Bitwise Operations NOT X 5 5 5
AND/XOR 5 5 5 X

Divide and Multiply DIV/IDIV X X 5 X
IMUL/MUL X X X X

Bit Rotates RCL/RCR X X X X
ROL X 5 5 5
ROR X X 5 5

Bit Shifts SAR/SHR X X X X
SARX - - X X
SHL 5 5 5 X
SHLX - - X 5

Bit Counting TZCNT - X 5 5
POPCNT - X 5 X
LZCNT - X 5 5

Exchange XCHG 5 5 X 5
CMPXCHG 5 X X X

Miscellaneous BEXTR - - 5 X
BTRW - X 5 5
BZHI - - 5 X
BSWAP - - X X
CMOVE - - 5 X

TABLE III: SYNTHCT core safe set. Rows represent different op-
codes. Columns represent bitwidths: B: Byte, W: Word (2 Bytes),
L: Long (4 Bytes), and Q: Quad Word (8 Bytes). Xindicates that
an instruction variant is a part of the safe set. 5 denotes that the
instruction variant is not a part of the safe set. X denotes that the
opcode is common to the LibFTFP safe set, while X denotes that
the instruction is absent in the LibFTFP safe set. - indicates that the
instruction does not operate on the corresponding bitwidth.

add and cmp imul mov
movabs movsd movsx movsxd movzx mul
neg not or sar sbb seta
setae setbe sete setg setl setle
setne shl shr sub test xor

TABLE IV: Safe Instruction Set from LibFTFP. Control-flow and
memory instructions are excluded for clarity. Opcodes present in
LibFTFP and not in SYNTHCT’s safe set are highlighted in red.
As the table only shows the LibFTFP safe set, opcodes safe in
SYNTHCT but not in LibFTFP are not shown. Opcodes common
to both LibFTFP and SYNTHCT safe sets are highlighted in green.
Opcodes with partial overlap, i.e., only some variants of instruction
are in SYNTHCT safe set, are highlighted in orange. Instructions in
the mov* and set* family are excluded from coloring as SYNTHCT
has a choice in selecting between some of these variants, but does
not necessarily need to contain all. See Table III to compare the
SYNTHCT safe set against the LibFTFP (this) safe set.

tance may be needed to synthesize translations for instructions
that are missing in the microarchitecture safe set to make the
two sets compatible.

4) Comparison to Prior Work: In this subsection, we com-
pare the SYNTHCT safe set with safe sets from prior work,
e.g., LibFTFP [7]. The list of safe instruction is directly taken
from their work and reproduced in Table IV. We have excluded
all control-flow and memory instructions, since those are likely
to be unsafe across microarchitectures (§III). Their work does
not explicitly list the different variants of instructions, i.e., the
different bitwidths of operands, but rather only the opcodes.
Therefore, we assume that an opcode encodes all variants of
that particular instruction.

The key takeaway is that most instructions that are consid-
ered safe in SYNTHCT are also what LibFTFP (and hence
experts in constant-time programming) considers safe, this
corresponds to almost all instructions in Table II and all
X in Table III or alternatively the green + orange + black
opcodes in Table IV. Notable exceptions to this trend are the
instructions in the bit-counting and miscellaneous categories:
these are complex x86 64 instructions for which SYNTHCT
was unable for synthesize translations for certain variants
of the instruction. This is likely due to strict timeout limits
and imperfect component selection during our factorization
strategy. We aim to improve this to shrink the safe set further
in future work.

That said, SYNTHCT need not have translations for every
variant of every instruction. For example, SYNTHCT’s safe set
only needs to include XORQ and 1 (out of 4) variants of XORB
(as the other 3 variants of XORB map trivially to the one with
a translation). Lastly, there are certain opcodes, e.g., CMP and
TEST, that SYNTHCT does not include in its safe set as we
were able to synthesize translations for all variants of these
instructions using other instructions in the safe set.

B. Performance Evaluation

In this section, we evaluate the performance of translations
synthesized by SYNTHCT. We show the distribution of lengths
of synthesized safe translations in Figure 7. Note that these
are lengths of programs when unsafe instructions are written
completely in terms of the safe set of instructions introduced
in §VII-A. We split the graph into two for clarity, one for
the majority of instructions that do not use factorization, and
another for instructions that need factorization for synthesis.

As we see from the graph, most instructions have trans-
lations made up of less than 6 instructions. Each instruction
may have multiple translations/solutions (§VI-D1) of different
lengths. We show the minimum/maximum solution lengths
to showcase the solution diversity. The second graph shows

12

0 20 40 60 80
100

101

102
Pr

og
ra

m
 L

en
gt

h No FactorizationMin. Length
Max. Length

BTRL
BTSQ

BTRQ
ROLQ

BTCQ
BLSIL

BLSMSKL
BTSL

BTCL
LZCNTL

LZCNTQ
TZCNTQ

101

102

103

Pr
og

ra
m

 L
en

gt
h With Factorization

Fig. 7: Distribution of lengths of Synthesized Translations. Each x-
tick denotes an index for an unsafe instruction, or a group of unsafe
instructions (when they form a cycle).

the complexity of solutions that SYNTHCT can generate with
factorization. The three bit-counting instructions all take 800+
instructions to implement: LZCNTL (864), LZCNTQ (2893),
TZCNTQ (3277). This shows the strength of our factorization
solution: with the help of factorization, SYNTHCT is able to
scale to generate programs of length 3000+, even though the
individual synthesis tasks are limited to synthesizing programs
of small lengths.

C. Case-Study: Rotate Left

Now, we present a case-study on synthesis of the rotate fam-
ily of instructions, specifically Rotate-Left (ROLL), to illustrate
the effectiveness of the node-splitting strategy introduced
in §VI-C. During the initial synthesis run, we were unable
to get synthesis successes for rotate instructions to synthesize
a translation into simpler instructions, e.g., using bitshifts
and other bitwise operations. As highlighted earlier, this is
primarily due to the complex and opaque K rol opcode used
in the rotate family of instructions. Without further assistance,
SYNTHCT is unable to meaningfully pick components that
increase the likelihood of successful synthesis.

To assist SYNTHCT in synthesis, we introduce a new trans-
formation in SYNTHCT to node split the rol intermediate
opcode into simpler K opcodes. Both the original opcode
and its translation is shown is Figure 8. The code snippet
only shows the rotate part of ROLL; the instruction AST has
other unrelated nodes to extract and concatenate the relevant
bits of its operands (shown in the appendix, Figure 13 for
reference). Note that before implementing the transform in
SYNTHCT, we first manually verified the equivalence between
the original opcode and the transformed AST by querying
the SMT solver for equivalence through Rosette. Once node
splitting is applied, the newly generated AST for ROLL (shown
in the appendix, Figure 14) proceeds through the synthesis
process as usual. As SYNTHCT now has more structural
information to work with, the component selector can pick
better components for synthesis. However, the new AST is
larger than the original after translation. We therefore use

; assume %1 is already mod-ed
; %w = width of rotate rol, %0, and %1
(rol %0 %1) -> (bvor (bvlshr %0 (bvsub %w %1))

(bvshl %0 %1))

Fig. 8: Node splitting transformation rule for the ROL opcode.

1 (define (implement-DIVL-R32 S r1 r2 r3 r4 r5)
2 (let (
3 [local-r1 (extract 31 0 (state-Rn-ref S r1))]
4 [local-r2 (extract 31 0 (state-Rn-ref S r2))]
5 [local-r3 (extract 31 0 (state-Rn-ref S r3))]
6)
7 ; Assume r2 is edx and r1 is eax.
8 ; r3 is "real" argument to instruction (divisor)
9 ; r3 outputs quotient and r4 outputs remainder

10 (begin
11 (define dividend (concat local-r2 local-r1))
12 (define divisor (zero-extend local-r3
13 (bitvector 64)))
14 ; Avoid division by 0
15 (assume (not (bveq divisor (bv 0 64))))
16

17 (set! r3 (bv 0 64))
18 (set! r4 (bv 0 64))
19

20 (for ([r5 (in-range 63 -1 -1)])
21 (set! r4 (bvshl r4 (bv 1 64)))
22 (set! r4 (bvor r4 (bvand (bvlshr dividend
23 (bv i 64))
24 (bv 1 64))))
25 (if (bvuge r4 divisor)
26 (begin
27 (set! r4 (bvsub r4 divisor))
28 (set! r3 (bvor r3 (bvshl (bv 1 64)
29 (bv r5 64)))))
30 #f))
31

32 (state-Rn-set! S r3
33 (zero-extend (extract 31 0 r3)
34 (bitvector 64)))
35 (state-Rn-set! S r4
36 (zero-extend (extract 31 0 r4)
37 (bitvector 64)))
38)))

Fig. 9: Long-division algorithm to node split DIVL-R32, imple-
mented in racket. The algorithm is first checked for equivalence
with the reference DIVL-R32 semantics before implementing node
splitting in SYNTHCT.

instruction factorization (§VI-B) to synthesize the solution for
ROLL in parts.

To summarize, using the composition of two techniques,
node splitting and factorization, along with some expert-
written transformations, enables SYNTHCT to synthesize so-
lutions for some of the more complicated instructions in the
ISA. These expert-written transforms are a one time effort and
scale to multiple ISAs.

D. Case-Study: Division (DIVL-R32)
In this section, we present a case study to synthesize the di-

vision instruction, specifically DIVL-R32 — a 32-bit division
from the x86 64 ISA, that is known to be unsafe on today’s
microarchitectures. Similar to the rotate instructions, we use
a combination of node splitting and instruction factorization

13

div_init

div_loop

div_final

div_loop

rdx rax R1 R2 R3 R4 R5

…
Repeat

x64 times

Lines 10 - 18

Lines 21 - 30

Lines 32 - 37

div_init

div_loop

div_final

div_loop

rdx rax R1 R2 R3 R4 R5

…
Repeat

x64 times

Lines 10 - 18

Lines 21 - 30

Lines 32 - 37

concatenateMInt

bv 0 32 div_quotient_int32

concatenateMInt

rdx rax

extractMInt

R1 32 .. 64

Dividend Divisor

concatenateMInt

bv 0 32 div_quotient_int32

concatenateMInt

rdx rax

extractMInt

R1 32 .. 64

Dividend Divisor

a. b.

Fig. 10: DIVL-R32 semantics AST (a) Semantics of DIVL-R32 from the K-framework. DIVL-R32 takes the dividend as implicit inputs in
registers rdx and rax and the divisor as an explicit input in register R1. The complex semantics of computing the quotient (and remainder) is
hidden behind the opaque K-opcode: div quotient int32 (in blue). (b) Iterative node split of DIVL-R32. The algorithm from Figure 9
naturally splits DIVL-R32 into three parts: (i) div init (lines 10 - 18), (ii) div loop (lines 21 - 30), and (iii) div final (lines 32
- 37). Solid lines represent register reads by the newly split opcode and dashed lines represent register writes. The semantics of DIVL-R32
after the split (in (b)) is equivalent to the original semantics (in (a)).

to synthesize a safe translation for division. Compared to
a rotate operation, however, division has far more complex
semantics that introduces new scalability challenges in our
above mentioned techniques.

The semantics for the DIVL-R32 instruction is shown
in Figure 10a. As seen from the figure, the structure of
DIVL-R32 is simple. All the complexity to compute the
quotient is hidden behind the div quotient int32 K-
opcode that takes two operands, the dividend and the divisor,
and computes the quotient. The semantics to set the remainder
is similar and omitted for brevity. In order to synthesize
DIVL-R32 we must first split the complex quotient opcode
into simpler K-operations.

1) Division Algorithm: For simplicity, we use the stan-
dard long-division algorithm to compute the quotient and
the remainder. The racket implementation of our division is
shown in Figure 9. As with rotate, we begin by proving that
our implementation of divide is semantically equivalent to
DIVL-R32 using an SMT solver. After proving equivalence,
we lift the expressions for quotient and remainder directly
from our racket implementation to implement node splitting
in SYNTHCT.

2) Scalability Challenges: The expressions generated for
the quotient (and remainder) from the long-division algorithm
are very large. As shown in Figure 9 the loop body to compute
the quotient and remainder is repeated bitwidth times (in
case of DIVL-R32, this is 64) leading to a very large AST.
While factorization can generate smaller, manageable ASTs
for factors, the number of factors to synthesize makes synthesis
intractable.

3) Iterative Node Splitting: Rather than splitting
div quotient int32 down to the simplest K-
operations in one single step, we iteratively split the
quotient (and remainder) K-opcode into simpler, smaller
pieces in each step. Looking at the long-division algorithm,
it naturally breaks into three smaller pieces: (i) An initial
setup step that initializes values, (ii) a loop body that is
repeated bitwidth (64) number of times, and (iii) a final
post-loop step that extracts bits corresponding to the quotient

(and remainder) and sets the output registers. This split of
div quotient int32 along with the relevant lines of the
algorithm is shown in Figure 10b. Now, each of these splits be
broken down further into simpler K-opcodes and synthesized
as independent synthesis tasks, using techniques such as
factorization as required. Once synthesized, the solutions
to the splits are glued together to generate the translation
for the original DIVL-R32. This process is exceedingly
simple: the solutions to the three splits, i.e., loop init,
loop body, and loop final, are concatenated ensuring
that the loop body solution is repeated bitwidth (64)
times. Note that rather than generating a separate split for
each iteration of the loop body we can abstract away the loop
iteration variable as a symbolic operand to the loop body
split. This allows us to synthesize loop body once and
instantiate with different values for iter (63...0) to generate
loop body for the different iterations of the loop.

4) Manual Effort: During the synthesis of DIVL-R32,
we noticed that a particular factor of loop body failed to
synthesize initially. On debugging, we isolated the reason for
failure to be the inabilty to synthesize a factor that performed a
bvuge, an unsigned greater-than or equal comparison, to set a
register. As the x86 64 ISA does not contain an instruction to
set a register based on a comparison directly (only indirectly
through a cmp and setcc) our component selection failed
to pick the right set of components to be able to synthesize
this factor. To address the issue, we added a new pseudo-
instruction to SYNTHCT, PSETCC (r1 r2 r3 r4), that
sets r4 based on the result of comparison between r2 and
r3. The relational operator to use for comparison, e.g., equal
v/s greater-than etc., is controlled by the value in register
r1. Lastly, we manually implement PSETCC using a cmp
and setcc from x86 64 due to limitations with the current
component selection strategy.

E. Secondary Metrics

1) Effectiveness of Component Selection: In this section,
we look at the effectiveness of our component selection
strategy (§VI-A) and seek to verify our hypothesis: structurally

14

0 5 10 15 20 25 30
Component Rank

0

50

100

150

200
Fr

eq
ue

nc
y

Fig. 11: Effectiveness of component selection. The histogram shows
the number of synthesized translations that use a component ranked
at index i (denoted on the X-axis). All synthesis tasks used a fixed
set of 32 components drawn using the KNN strategy described
in §VI-A. Components most similar are at index 0 while least similar
component is index 31. Higher numbers for better ranked components
is indicative of a good component selection strategy.

similar instructions are also semantically similar, and hence
more likely to be used in successful synthesis. To do so, we
look at the number of times an instruction ranked as the i-th
nearest neighbor by the component selection algorithm is used
in the translation. The histogram plot is shown in Figure 11.
Recall, for all synthesis tasks K = 32 components were
chosen. Instructions ranked 0 are most similar to the target
synthesis instruction, It, and instruction ranked 31 is the least
similar. As we see from the histogram, instructions that are
more similar to the target instruction, and hence ranked higher
by the component selection strategy, are more often used in
a synthesis success when compared lower ranked instructions.
This plot shows the effectiveness of our component selection
strategy and validates our hypothesis from earlier.

2) Synthesis Time for Successes Distribution: Lastly, we
look at the time taken for synthesis successes to assess if
the strategies we develop in SYNTHCT actually result in
reasonable synthesis time. To do so, we look at the time taken
(in seconds) for successful synthesis tasks. The cumulative
distribution frequency (CDF) for synthesis time is shown
in Figure 12. From this graph, we see that most successful
synthesis tasks generate solutions in a short amount of time:
95% of the synthesis successes are achieved within 2000
seconds. Note that this graph shows the synthesis time for
individual synthesis tasks. Instructions that need factorization
run multiple smaller synthesis tasks that eventually result in
successful synthesis of the original instruction. The synthesis
time for such instructions is the sum of time spent in the
synthesis of individual synthesis tasks. This total time is not
shown in the current figure. From this, we can conclude that
the combination of: (i) component selection, (ii) small program
lengths, and (iii) limiting the number of registers, does indeed
keep the synthesis time for individual synthesis tasks small
while allowing for synthesis of translations for the majority of
the ISA.

0 2000 4000 6000 8000
Time (s)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 S

uc
ce

ss

0.50

0.900.950.99

Fig. 12: Cumulative Distribution of synthesis time for successful
synthesis tasks, using data from 2615 synthesis successes. The Y-axis
shows the fraction of synthesis successes that take time (in seconds)
shown on X-axis. 95% of synthesis successes are achieved quickly,
in < 2000 seconds, showing the effectiveness of the combination of
strategies developed in SYNTHCT.

VIII. RELATED WORK

There is a rich literature that studies how to write and
run applications in constant time (sometimes called “data-
oblivious programming”). For example, application-centric
works propose constant-time cryptography [13], [14], machine
learning [18], [41], [62], databases [19], [20], [21], memory
and datastructures [23], [24], general purpose code [15], [16],
[25], [63], utilities [22] and floating point functions [7]. Other
works study how to write and compile (e.g., [29], [26], [27])
high-level programs to constant-time ones. ISA abstractions
study how to design interfaces usable by both software design-
ers and hardware architects to uphold constant-time security
guarantees [31], [64].

SYNTHCT is complementary to these works. They all
produce what we call mostly constant-time code (Section I)
and assume a fixed set of safe instructions. SYNTHCT can be
used to improve their security/portability and performance, by
mapping their code to microarchitecture-specific safe sets.

The closest work to SYNTHCT conceptually is Arm’s
DIT [65], data-oblivious ISAs (OISAs) [31] and HW/SW con-
tracts [66], [67]. DIT and OISAs are ISA-level specifications
of what instructions are safe and therefore guarantee a consis-
tent safe set across microarchitectures. Widespread acceptance
of such abstractions across vendors would therefore decrease
the need for SYNTHCT; yet, such widespread acceptance is
far off because ISA changes have an extremely high barrier to
entry. Case in point, there is no indication that other vendors
beyond Arm will support such features. Lastly, SYNTHCT is
related to HW/SW contracts for secure hardware [66], [67]:
a safe set is a concrete example of such contracts (broadly
construed).

There is a large body of related work that uses program
synthesis to synthesize semantically equivalent alternate im-
plementations of existing code, e.g., for better performance
(superoptimizers [68]) or lower energy utilization [69]. How-
ever, none of the existing works have considered the problem
of synthesizing an instruction(s) when only a subset of the
ISA is allowed to be used in the synthesis. We consider

15

these techniques complementary. For example, it would be
interesting to consider a genetic algorithm from [69] as a
subroutine for synthesis instead of CEGIS as in SYNTHCT.

IX. DISCUSSION

1) Vector and Floating-point instructions: We believe vec-
tor instructions can be supported with additional engineering
effort, e.g., expanding parsing of x86 semantics and mod-
elling vector registers in synthesis. As vector instructions are
multiple instances of non-vector instructions, our techniques
such as instruction factorization should reduce them to mul-
tiple simpler problems. Floating-point instructions are more
challenging. In theory, using a combination of node splitting
and factorization, SYNTHCT should be able generate safe
translations for floating-point instructions. However, precisely
modelling floating-point operations in bitvector theory in a
way that performs well with SMT solvers is known to be
challenging [70]. We have therefore left floating point for
future work.

2) Integrating with compiler-flows: SYNTHCT is currently
implemented as a post-compilation, binary tool for ease of
implementation and generality. However, SYNTHCT can also
be implemented at the compiler level to make it more conve-
nient to use as a part of the compiler toolchain. Additionally,
a compiler-level implementation may also generate better
performing translations, e.g., by enabling optimizations and
better register allocation. Implementing SYNTHCT as a part
of a compiler toolchain also enables integration with security-
aware DSLs designed for constant-time programming, e.g.,
FaCT [29], and allows us to only selectively translate unsafe
instructions with secret operand values rather than all unsafe
instructions.

3) Alternate deployment opportunities: SYNTHCT transla-
tions can also be deployed as a part of processor frontend or
microcode in a software-transparent way. Using the transla-
tions, unsafe instructions may be selectively translated on-the-
fly depending on if a security mode bit is set. This allows
software to turn the protection on for only sensitive pieces
of code. Yet, implementing translations in hardware is more
intrusive and may introduce new tradeoffs. For example, the
number of instructions making up the translation may become
a first-order constraint as microcode ROM is a scarce resource.

X. CONCLUSION

In this work we develop SYNTHCT, a framework to fa-
cilitate writing portable constant-time code, i.e., that is both
secure and performant across different microarchitectures. The
high-order bit is that with minimal programmer intervention,
we can scale to complex ISAs such as x86 64, and even tackle
some of the more complex instructions in said ISAs (such as
integer division).

Long term, we hope SYNTHCT (along with other
spiritually-similar works [31], [67], [65]) encourages sys-
tems and hardware designers to expose abstract but explicit
security-critical information in contracts such as ISAs (or their
microarchitecture-specific counterparts). It is worth stating that
the safe-set specification used in this work is an extremely
simple, and already useful, exemplar abstraction of this kind

— but is by no means the end of the story. Pushing the idea of
microarchitecture-specific specifications further, one can imag-
ine more expressive security contracts (e.g., one that specifies
a partition on unsafe instruction operands, which could be
used directly by SYNTHCT to improve CT performance) or
even contracts geared for other metrics such as performance
(e.g., more formal models of instruction interactions and their
resulting pipeline throughputs).

REFERENCES

[1] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in
S&P’15.

[2] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX,” in CCS ’17.

[3] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of aes,” in CT-RSA’06.

[4] Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security’14.

[5] O. Aciicmez, J.-P. Seifert, and C. K. Koc, “Predicting secret keys via
branch prediction,” IACR’06.

[6] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch
predictor,” in ASPLOS’18.

[7] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
S&P’15.

[8] J. Großschädl, E. Oswald, D. Page, and M. Tunstall, “Side-channel
analysis of cryptographic software via early-terminating
multiplications,” in ICISC’09.

[9] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and
N. Tuveri, “Port contention for fun and profit,” IACR’18.

[10] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” in USENIX Security’19.

[11] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in S&P’19.

[12] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,” in
USENIX Security’21.

[13] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
PKC’06.

[14] D. J. Bernstein, “The Poly1305-AES Message-Authentication Code,”
in FSE’05.

[15] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of
control-flow side channel attacks,” IACR’05.

[16] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital
side-channels through obfuscated execution,” in USENIX Security’15.

[17] B. A. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional encryption using intel sgx,” in CCS’17.

[18] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “SGX-BigMatrix: A
Practical Encrypted Data Analytic Framework With Trusted
Processors,” in CCS’17.

[19] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An Oblivious and Encrypted Distributed Analytics
Platform,” in NSDI’17.

[20] S. Eskandarian and M. Zaharia, “ObliDB: Oblivious Query Processing
for Secure Databases,” Proceedings of the VLDB Endowment.

[21] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in S&P’18.

16

[22] S. Tople and P. Saxena, “On the trade-offs in oblivious execution
techniques,” in Detection of Intrusions and Malware, and Vulnerability
Assessment.

[23] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace : Oblivious
memory primitives from intel sgx,” in NDSS’18.

[24] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious filesystem for intel sgx,” in NDSS’18.

[25] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in S&P’09.

[26] M. Vassena, C. Disselkoen, K. v. Gleissenthall, S. Cauligi, R. G. Kıcı,
R. Jhala, D. Tullsen, and D. Stefan, “Automatically Eliminating
Speculative Leaks from Cryptographic Code with Blade,” POPL’21.

[27] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. Stefan, T. Rezk,
and G. Barthe, “Towards constant-time foundations for the new spectre
era,” CoRR, vol. abs/1910.01755, 2019.

[28] J. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison,
D. Kohlbrenner, and C. W. Fletcher, “Opening Pandora’s Box: A
Systematic Study of New Ways Microarchitecture Can Leak Private
Data,” in ISCA’21.

[29] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Gregoire, G. Barthe, R. Jhala, and D. Stefan, “FaCT: A
dsl for timing-sensitive computation,” in PLDI’19.

[30] ARM, “Arm data indepdent timing specification,” 2021. [Online;
accessed 3-Jun-2021].

[31] J. Yu, L. Hsiung, M. E. Hajj, and C. W. Fletcher, “Data oblivious isa
extensions for side channel-resistant and high performance
computing,” in NDSS’19.

[32] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila, “Hardware-software
contracts for secure speculation,” CoRR, vol. abs/2006.03841, 2020.

[33] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical
attack framework for precise enclave execution control,” in SysTEX’17.

[34] V. Kiriansky, I. A. Lebedev, S. P. Amarasinghe, S. Devadas, and
J. Emer, “Dawg: A defense against cache timing attacks in speculative
execution processors,” in MICRO’18.

[35] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface,” in USENIX
Security’20.

[36] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled Detection of Speculative Information Flows,”
in S&P’20.

[37] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury, “oo7: Low-overhead defense against spectre attacks
via binary analysis,” CoRR, vol. abs/1807.05843, 2018.

[38] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO’99.

[39] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“EDDIE: EM-Based Detection of Deviations in Program Execution,”
in ISCA’17.

[40] M. Lipp, A. Kogler, D. F. Oswald, M. Schwarz, C. Easdon,
C. Canella, and D. Gruss, “PLATYPUS: software-based power
side-channel attacks on x86,” in S&P’21.

[41] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors,” in USENIX Security’16.

[42] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A
programming framework for secure computation,” S&P ’15.

[43] S. E. Richardson, “Exploiting trivial and redundant computation,” in
ARITH’93.

[44] J. J. Yi and D. J. Lilja, “Improving processor performance by
simplifying and bypassing trivial computations,” in ICCD’02.

[45] E. Atoofian and A. Baniasadi, “Improving energy-efficiency by
bypassing trivial computations,” in IPDPS’05.

[46] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” in ISCA’97.

[47] A. Sodani and G. Sohi, “Understanding the differences between value

prediction and instruction reuse,” in MICRO’98.

[48] C. Molina, A. González, and J. Tubella, “Dynamic removal of
redundant computations,” in ICS’99.

[49] S. Mittal, “A survey of value prediction techniques for leveraging
value locality,” CCPE’17.

[50] C. Sakhuja, A. Subramanian, P. Joshi, A. Jain, and C. Lin,
“Combining branch history and value history for improved value
prediction,” CVP-Championship Value Prediction, 2019.

[51] A. Seznec, “Exploring value prediction with the eves predictor,” in
CVP-Championship Value Prediction, 2018.

[52] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in HPCA’99.

[53] R. Canal, A. González, and J. E. Smith, “Very low power pipelines
using significance compression,” in MICRO’00.

[54] S. Wang, J. Hu, S. G. Ziavras, and S. W. Chung, “Exploiting
narrow-width values for thermal-aware register file designs,” in
DATE’09.

[55] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A
complete formal semantics of x86-64 user-level instruction set
architecture,” in PLDI’19.

[56] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS’08.

[57] E. Torlak and R. Bodik, “A lightweight symbolic virtual machine for
solver-aided host languages,” in PLDI’14.

[58] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning distributed representations of
graphs,” CoRR, vol. abs/1707.05005, 2017.

[59] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in NIPS’13.

[60] B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate Club: An API
Oriented Open-source Python Framework for Unsupervised Learning
on Graphs,” in CIKM ’20, ACM.

[61] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., 1972.

[62] H. B. Lee, T. Jois, C. W. Fletcher, and C. A. Gunter, “DOVE: A
Data-Oblivious Virtual Environment,” in NDSS’21.

[63] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert, “Secure and private
function evaluation with Intel SGX,” in SIGSAC’19.

[64] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in ASPLOS’09.

[65] “Arm architecture registers armv8, for armv8-a architecture profile.”
https:
//developer.arm.com/docs/ddi0595/latest/aarch32-system-registers/cpsr.

[66] M. Guarnieri and M. Patrignani, “Contract-aware secure compilation,”
CoRR, vol. abs/2012.14205, 2020.

[67] M. Guarnieri, B. Köpf, J. Reineke, and P. Vilar, “Hardware-Software
Contracts for Secure Speculation,” in IEEE S&P 2021.

[68] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in ASPLOS’13.

[69] E. M. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer,
“Post-compiler software optimization for reducing energy,” in
ASPLOS’14.

[70] E. Darulova and V. Kuncak, “Sound compilation of reals,” in POPL’14.

APPENDIX A
EXAMPLE TRANSLATIONS

This section shows examples of synthesized translations.
See Table V.

17

https://developer.arm.com/docs/ddi0595/latest/aarch32-system-registers/cpsr
https://developer.arm.com/docs/ddi0595/latest/aarch32-system-registers/cpsr

Unsafe Instruction(s) Safe Instructions in a Translation

ADCB-RH-RH MOVQ, SBBB-RH-RH, (SUBB-RH-RH V SUBB-RH-R8)
DECL-R32 (XORQ-R64-R64 V PXOR-R64-R64), MOVQ, (NOTL-R32 V ANDL-R32-R32)
INCL-R32 PNOT, NEGL-R32

BLSIL-R32-R32 (NOTL-R32 V ANDL-R32-R32), MOVQ, SHLQ-R64-CL, SHRQ-R64-CL, SUBQ-R64-R64,
(XORQ-R64-R64 V PXOR-R64-R64), SARQ-R64-CL, NEGL-R32, PSET-FLAG

BTSL-R32-R32 MOVQ, SHLQ-R64-CL, SHRQ-R64-CL, SUBQ-R64-R64, (XORQ-R64-R64 V PXOR-R64-R64), SARQ-R64-CL,
NOP, PSET-FLAG

CLTD IMULL-R32, MOVQ
PCMOV-R64-R64-R64 CMOVEQ-R64-R64, (ANDQ-R64-R64 V PAND-R64-R64)

LZCNTQ-R64-R64 MOVQ, SHLQ-R64-CL, SHRQ-R64-CL, SUBQ-R64-R64, (XORQ-R64-R64 V PXOR-R64-R64),
(ANDQ-R64-R64 V PAND-R64-R64), CMOVEQ-R64-R64, SARQ-R64-CL, PSET-FLAG

POPCNTL-R32-R32 POPCNTQ-R64-R64, (NOTL-R32 V ANDL-R32-R32)
SUBL-R32-R32 BEXTRL-R32-R32-R32, SBBL-R32-R32
XORL-R32-R32 (XORQ-R64-R64 V PXOR-R64-R64), XCHGL-R32-EAX, SARQ-R64-CL, PSPLIT
(INCW-R16 V DECW-R16 V NEGW-R16) MOVW-R16-R16, NEGL-R32

TABLE V: Example translations for unsafe instructions. The table shows which safe instruction opcodes (§VII-A3) are used to translate
several representative unsafe instructions. The “V” denotes a disjunction: These instructions form an equivalence class and we have the
freedom to choose one of the instructions from the class to utilize in the final translation.

APPENDIX B
CASE STUDY: ROLL-R32-CL

This section shows the semantics AST of the original
ROLL-R32-CL and ROLL-R32-CL after splitting. See Fig-
ures 13 and 14.7/23/2021 tabula-rasa.cs.illinois.edu:1337/ROLL-R32-CL_R2.svg

tabula-rasa.cs.illinois.edu:1337/ROLL-R32-CL_R2.svg 1/1

Fig. 13: The original ROLL-R32-CL instruction (used in case-
study §VII-C). The AST was generated directly from K semantics.

7/23/2021 tabula-rasa.cs.illinois.edu:1337/ROLL-node-split.svg

tabula-rasa.cs.illinois.edu:1337/ROLL-node-split.svg 1/1

Fig. 14: The ROLL instruction after splitting the rol opcode. The
rol opcode from the previous figure (Figure 13) is replaced by
the equivalent translation in Figure 8, as described in the case-study
(§VII-C). Notice that the node labelled as (%4: rol) has now been
replaced by the subtree rooted by the node labelled (%28: orMInt).
The new AST is semantically equivalent to the old AST and is used
in further synthesis steps, e.g., factorization.

18

